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1 INTRODUCTION

このノートでは場の量子論ノート [1]では扱わなかった内容であり、場の量子論の周辺の話ノート [2] の続編とな
る内容となる。第 1章と第 2章は相対論的量子力学と非相対論的な量子力学との関係について扱った。相対論的な
量子力学では基礎方程式がスカラー場であればクライン-ゴルトン方程式、Dirac場であればDirac方程式となるが、
それらから非相対論的な極限においてシュレディンガー方程式が導かれることを見る。これらは、そして特に後者
については、多くの相対論的量子力学で扱われる内容ではあるが、本ノートにおいてもあえて取り上げた。非相対
論的な極限でシュレディンガー方程式を導出している本としては例えば [3]などがある。場の量子論と相対論的量
子力学との関係や場の量子論の枠組みから量子力学の基本的な枠組みがいかに導出できるかを場の量子論の周辺の
話ノート [2]で見た。このノートで相対論的な量子力学の基礎方程式と量子力学の基礎方程式との繋がりを見るこ
とで、これらの関係を完全なものにしたいと思う。このノートでも基本的なノーテーションは場の量子論ノート [1]

に合わせる。なので必要に応じて場の量子論ノート [1]を参照されたい。また第 1章や第 2章は相対論的な量子力
学が出発点であるので、それらを扱った場の量子論の周辺の話ノート [2]も必要に応じて参照されたい。第 3章は
場の量子論の周辺の話 [2]の中で Dirac場の 1の分割を汎関数積分を用いて表した流れを受けて、スカラー場の場
合にも同様に 1の分割が汎関数積分を用いても表すことができることを示した。

2 非相対論的な極限でクライン-ゴルトン方程式からシュレディンガー方程式
を導出する

最初にクライン-ゴルトン方程式の非相対論的な極限でシュレディンガー方程式が導出できることを見ていく。こ
こで扱う場は場の量子論の周辺ノート [2]で得られたところの相対論的な量子力学的な古典場であるので演算子とし
ての場ではないことに注意されたい。量子力学では通常 ℏや cを 1とする自然単位系は取らないので、それに合わ
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せてここでも ℏや cは 1とせずに議論する。クライン-ゴルトン方程式は実スカラー場や複素スカラー場などのスピ
ン 0粒子の場が満たす方程式であり次のようなものである。(

−∂2 + m2c2

ℏ2

)
ϕ(x) = 0 (1)

ここで ϕ(x)は実関数、または複素関数である。場の量子論の周辺の話ノート [2]でスカラー場のフーリエ積分表示
を与えた。即ち

ϕ(x) =

∫
d3p

(2πℏ)3/2
φ(p)e

i
ℏpx (2)

である。ここで 4元運動量 pの成分は p = (E,p)であり、Eは相対論的な質量mの粒子のエネルギーである。Eは
運動量の大きさ |p|が光速 cに比べて十分に小さい時には E =

√
m2c4 + (pc)2 = mc2 + p2

2m +O(1/c2) と展開でき
るのでこれを使うと ϕ(x)は

ϕ(x) =

∫
d3p

(2πℏ)3/2
φ(p)e

i
ℏ (p·x−x0E/c)

=

∫
d3p

(2πℏ)3/2
φ(p)e

i
ℏ

(
p·x− p2

2m t
)
· e− i

ℏmc2t

= φ(x) · e− i
ℏmc2t (3)

と書ける。ここで φ(x)は

φ(x) =

∫
d3p

(2πℏ)3/2
φ(p)e

i
ℏ

(
p·x− p2

2m t
)

(4)

である。ϕ(x)を非相対論的なパート φ(x)と e−
i
ℏmc2t との積の形に分離できた。この時点で φ(x)がシュレディン

ガー方程式を満たすことを示すことができるが、ここではクライン-ゴルトン方程式を使ってシュレディンガー方程
式が非相対論的な極限ででてくることを示してみる。(3)式の ϕ(x)の表式を使ってクライン-ゴルトン方程式の時間
の 2回微分の項を計算すると

1

c2
∂2

∂t2
ϕ(x) = e−

i
ℏmc2t

(
1

c2
∂2

∂t2
− i

ℏ
2m

∂

∂t
− m2c2

ℏ2

)
φ(x) (5)

となる。一方でクライン-ゴルトン方程式は
1

c2
∂2

∂t2
ϕ(x) =

(
∆− m2c2

ℏ2

)
ϕ(x) = 0 (6)

なのでこれらそれぞれの右辺が等しいという関係から(
− i

ℏ
2m

∂

∂t
−∆

)
φ(x) +

1

c2
∂2φ

∂t2
(x) = 0 (7)

が得られる。後はさらにこの両辺に ℏ2

2m をかけて 1/c2 の項が十分に小さいとして無視すると

iℏ
∂

∂t
φ(x) = − ℏ2

2m
∆φ(x) (8)

となりシュレディンガー方程式が得られた。もともとはクライン-ゴルトン場 ϕ(x) = φ(x)e−
i
ℏmc2t を考えていたの

に対して、得られたのは φ(x)に対する方程式ではあるが、実際には量子力学的な確率の計算では |ϕ(x)|2 = |φ(x)|2

が重要であるので量子力学的には φ(x)の方程式が得られれば十分である。
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3 非相対論的な極限でDirac方程式からシュレディンガー方程式を導出する
次に Dirac的な古典場からシュレディンガー方程式が得られることを見ていく。ここでもやはり場の量子論の周
辺ノート [2]で得られたところのDiracの古典場であるので演算子ではなく通常の関数である。ただしスピノールの
自由度はそのまま残っているので 4次元のベクトルである。それらは左巻きスピノールの 2成分と右巻きスピノー
ルの 2成分とからなる。Dirac方程式は自然単位系では

(−i∂/+m)ψ(x) = 0 (9)

であったが、自然単位系を用いないで書くと

iℏγ0
∂

∂t
ψ(x) =

(
−iℏcγi ∂

∂xi
+mc2

)
ψ(x) (10)

となる。ここで γµは場の量子論ノート [1]で扱うところのディラック行列（クリフォード代数の基底）である。Dirac

の古典場は場の量子論の周辺の話ノート [2]によれば

ψ(x) =

√
1

2

∫
d3p

(2πℏ)3/2
√
2E

∑
s=1,2

e
i
ℏ (p·x−x0E/c)us(p)ψ(p)

=

√
1

2

∫
d3p

(2πℏ)3/2
√
2E

∑
s=1,2

e
i
ℏ

(
p·x− p2

2m t
)
us(p)ψ(p) · e−

i
ℏmc2t

= Ψ(x) · e− i
ℏmc2t (11)

と書けた。ここでも粒子のエネルギー E を運動量が光速 cより十分に小さいと近似して非相対論的なパート Ψ(x)

と e−
i
ℏmc2t とに分離した。即ち

Ψ(x) =

√
1

2

∫
d3p

(2πℏ)3/2
√
2E

∑
s=1,2

e
i
ℏ

(
p·x− p2

2m t
)
us(p)ψ(p) (12)

である。(11)の表式を用いて Dirac方程式の時間微分の項を計算すると

iℏγ0
∂

∂t
ψ(x) = e−

i
ℏmc2t

(
iℏγ0

∂

∂t
+mc2γ0

)
Ψ(x) (13)

となる。この式の右辺と Dirac方程式 (10)の右辺が等しいということから

iℏ
∂

∂t
Ψ(x) =

(
−iℏcγ0γi ∂

∂xi
+mc2

(
γ0 − 1

))
Ψ(x) (14)

が得られる。ここで非相対論的な Dirac場 Ψ(x)を左巻き成分と右巻き成分とでベクトルで表して

Ψ =

(
χL

χR

)
(15)

とすると (14)式は行列で

iℏ
∂

∂t

(
χL

χR

)
=

(
−iℏc

(
−σi 0

0 σi

)
∂

∂xi
+mc2

(
−1 1

1 −1

))(
χL

χR

)
(16)

と書ける。ここでさらに (
φ

χ

)
=

(
χL + χR

χL − χR

)
(17)
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と置くと (16)の上と下を足したものと引いたものがそれぞれ φおよび χの方程式になるので書き下すと

iℏ
∂

∂t
φ = iℏcσi ∂

∂xi
χ (18)

iℏ
∂

∂t
χ = iℏcσi ∂

∂xi
φ− 2mc2χ (19)

となる。2つ目の式より

χ =
iℏ
2mc

σi ∂

∂xi
φ− iℏ

2mc2
∂

∂t
χ

=
iℏ
2mc

σi ∂

∂xi
φ+

ℏ2

4m2c3
σi ∂

∂xi
∂

∂t
φ+O(1/c5) (20)

なので 1つ目の式の χに代入すると

iℏ
∂

∂t
φ = − ℏ2

2m
σiσj ∂

∂xi
∂

∂xj
φ+O(1/c2)

= − ℏ2

2m

1

2
{σi, σj} ∂

∂xi
∂

∂xj
φ+O(1/c2)

= − ℏ2

2m
∆φ (21)

となり、シュレディンガー方程式が得られた。ここでもう一つの場 χは

χ = O(1/c) (22)

なので非相対論的な極限においては 0となる。即ち χL = χR となり、スピノールの自由度が φの 2成分だけの自
由度になる。ここでもともと Dirac場はスピン群（広く言うとローレンツ群）の表現として得られたので、非相対
論的な極限においては場 φがどのような群の表現となっているかを見ておくのは重要である。(17)の置き換えはス
ピノールに対して、行列

O =

(
1 1

1 −1

)
, O−1 =

1

2

(
1 1

1 −1

)
(23)

をDirac場に作用させたものとして表すことができる。即ち ψ′ = Oψである。ここでローレンツ変換（のスピン群
への持ち上げ）Dは場の量子論ノート [1]によれば

D =

(
DL 0

0 DR

)
(24)

であった。Dirac場 Ψ はローレンツ変換（のスピン群への持ち上げ）のもと Ψ ′ = DΨ と変換する。このDの Oに
よる相似変換は

D = ODO−1

=
1

2

(
DL +DR DL −DR

DL −DR DL +DR

)
(25)

となる。ここでローレンツ変換（のスピン群への持ち上げ）Dでブーストを含まない空間の回転のみを考えると

D(ω) =

(
e

i
2σ

iωi 0

0 e
i
2σ

iωi

)
(26)
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となる。従ってブーストを含まない空間の回転のみであればDL = DR である。逆にブーストのみであれば

D(θ) =

(
e−

1
2σ

iθi 0

0 e
1
2σ

iθi

)
(27)

のようになる。即ちブーストは左巻きと右巻きとで異なる。ここでは非相対論的な極限を考えているのでブースト
は除いて空間 3次元の回転のみを考えることになる。即ち (25)は

D =

(
e

i
2σ

iωi 0

0 e
i
2σ

iωi

)
(28)

となる。従ってローレンツ変換（のスピン群への持ち上げ）は空間 3次元の回転の変換（のスピン群への持ち上げ）
である SU(2)となる。またこのDの表式からわかるように φと χが空間 3次元の回転によって交わることはない。
即ち φは空間 3次元回転の群（のスピン群への持ち上げ）の SU(2)の表現となることが理解できる。これは非相対
論的な量子力学におけるスピン 1/2の粒子の持つ性質と同一視できるものである。従って非相対論的な量子力学で
スピン 1/2粒子が SU(2)の表現であることが相対論的量子力学の枠組みから得られた。

4 スカラー場の1の分解について
この章では相対論的量子力学を離れて、場の量子論での話になる。であるので場は演算子として扱う。場の量子
論の周辺の話ノート [2]では反交換関係によって特徴付けられるDirac場の 1の分割が汎関数積分を用いて得られた
のを見た。ここでは同様の結果が交換関係によって特徴づけられるスカラー場に対しても得られることを見る。即
ち場の量子論ノート [1]で与えたスカラー場の 1の分割が汎関数積分を用いて表すことができることを示す。ここで
は簡単のため実スカラー場として話を進める。最初に消滅演算子の固有状態を与える。即ち

|φ⟩ = exp

(∫
d3p

(2π)32E
φ(p)a†(p)

)
|0⟩ (29)

は消滅演算子の固有状態となる。即ち

a(p) |φ⟩ = φ(p) |φ⟩ (30)

となる。1 この状態 |φ⟩は時間によらないシュレディンガー表示での実スカラー場の演算子 ϕ(x)に対して期待値 φ(x)

を与える。即ち |φ⟩の双対ベクトルを ⟨φ∗|と書くと

⟨φ∗|ϕ(x)|φ⟩ =
∫

d3p

(2π)32E

(
eip·xφ(p) + e−ip·xφ∗(p)

)
⟨φ|φ⟩

= φ(x) ⟨φ|φ⟩ (31)

となる。次に |φ1⟩と |φ2⟩との内積 ⟨φ∗
1|φ2⟩を計算する。この内積を φ∗

1 で汎関数微分すると
δ

δφ∗
1(p)

⟨φ∗
1|φ2⟩ =

1

(2π)32E
φ2(p) ⟨φ∗

1|φ2⟩ (32)

であり、φ2 で汎関数微分すると
δ

δφ2(p)
⟨φ∗

1|φ2⟩ =
1

(2π)32E
φ∗
1(p) ⟨φ∗

1|φ2⟩ (33)

1ここでの |φ⟩ は場の量子論の周辺の話ノート [2] のスカラー場の経路積分の議論で出てきた場の固有状態とは少し似ているが違うものであ
ることに注意されたい。
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であるので結局 ⟨φ∗
1|φ2⟩は

⟨φ∗
1|φ2⟩ = exp

(∫
d3p

(2π)32E
φ∗
1(p)φ2(p)

)
(34)

であることが分かる。これで 1の分割を計算する準備ができた。実スカラー場の 1の分割を得るには次の汎関数積
分を計算する必要がある。∫

[dφdφ∗] |φ⟩ exp
(
−
∫

d3p

(2π)32E
φ∗(p)φ(p)

)
⟨φ∗|

=

∫
[dφdφ∗]

∞∑
n,m=0

1

n!m!

∫
d3p1

(2π)32E1

d3p2

(2π)32E2
· · · d3pn

(2π)32En

d3q1

(2π)32E′
1

d3q2

(2π)32E′
2

· · · d3qm

(2π)32E′
m

× |p1,p2, · · · ,pn⟩ ⟨q1,q2, · · · ,qm|φ(p1)φ(p2) · · ·φ(pn)φ
∗(q1)φ

∗(q2) · · ·φ∗(qm) exp

(
−
∫

d3p

(2π)32E
φ∗(p)φ(p)

)
(35)

ここで次の汎関数積分を計算する。

Z(ρ, ρ∗) =

∫
[dφdφ∗] exp

(
−
∫

d3p

(2π)32E
(φ∗(p)φ(p)− ρ∗(p)φ(p)− φ∗(p)ρ(p))

)
=

∫
[dφdφ∗] exp

(
−
∫

d3p

(2π)32E
(φ∗ − ρ∗)(φ− ρ)

)
exp

(∫
d3p

(2π)32E
ρ∗ρ

)
∝ exp

(∫
d3p

(2π)32E
ρ∗ρ

)
(36)

この式の最初の行の右辺を見ると Z を ρと ρ∗で汎関数微分して ρ→ 0としたものを計算すると (35)の汎関数積分
が現れることが分かる。実際に(

(2π)32E1 · · · (2π)32En

)(
(2π)32E′

1 · · · (2π)32E′
m

)
δ

δρ∗(p1)
· · · δ

δρ∗(pn)

δ

δρ(q1)
· · · δ

δρ(qm)
Z

∣∣∣∣∣
ρ,ρ∗=0

=

∫
[dφdφ∗]φ(p1) · · ·φ(pn)φ

∗(q1)φ
∗(qm) exp

(
−
∫

d3p

(2π)32E
φ∗(p)φ(p)

)
=

(
(2π)32E1 · · · (2π)32En

)
δn,m · n! · δ(3)(p1 − q1) · · · δ(3)(pn − qn) (37)

であるので、これを使って (35)の最後の行の計算を行うと

(35) =

∞∑
n=0

1

n!

∫
d3p1

(2π)32E1
· · · d3pn

(2π)32En
|p1, · · ·pn⟩ ⟨p1, · · ·pn|

= 1 (38)

となる。これは場の量子論ノート [1]で与えた実スカラー場の 1の分割に等しい。従って実際に汎関数積分の表式
(35)は自由実スカラー場の 1の分割を与えることが分かる。複素スカラー場の場合は反粒子の場が加わるのである
が、実スカラー場のコピーがもうひとつ加わったものに等しいのでそれは単に反粒子に対しての (38)のコピーがか
けられるだけである。
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