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1 INTRODUCTION

このノートでは場の量子論ノート [1]では詳しく立ち入らなかった場の量子論のトピックをいくつか扱います。こ
のノートで扱うトピックは摂動論での繰り込みの計算などの場の量子論の主要なトピックからは少し外れたもので
はあるが、場の量子論の理解の助けになると思われるものを取り上げてました。このノートが場の量子論に対する
納得を得るのに役に立つものになれば幸いです。このノートは主に場の量子論ノートを基本に添えて議論を進めて
います。また記号やノーテーションなども場の量子論ノートに準じます。このノートでは場の量子論ノートの全て
の内容の理解を前提にはしませんが、前半の実スカラー場や複素スカラー場、できれば Dirac場の理解くらいまで
できていると問題なく読み進めることができると思います。
場の量子論と相対論的量子力学、あるいは非相対論的な量子力学の間はいずれも量子力学ですが少しへだたりが
あるります。4章ではその橋渡しをするための内容を書きました。場の量子論から量子力学のフレームワークを導
出して自然に場の量子論と量子力学との関係が見えるようにしました。例えば量子力学では位置の固有状態などが
ありますが、場の量子論の枠組みから位置の固有状態を導出するなどしました。これによって場の量子論の言葉で
波動関数などを記述することができるようになります。
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5章は光子などの質量が 0のボソン粒子の古典的な描像と場の量子論での描像との関係について簡単に書きまし
た。量子力学で扱う光の粒子性と古典力学で扱う光の波動性との関係がこれによって少し見て取れるようになるか
もしれません。
最後に 6章では、場の量子論での経路積分の導出を行いました。場の量子論ノート [1]では量子力学からのアナ
ロジーで天下り的に経路積分を与えました。理論としては経路積分法と演算子法が同等であることをノートを通し
て示していますが、このノートで直接演算子法から経路積分を導出しました。対象は実スカラー場、複素スカラー
場、Dirac場のそれぞれについて経路積分の導出を行いました。

2 場の量子論を自然単位系を使わないで表す
場の量子論ノートでは一貫してプランク定数 ℏおよび光速 cがそれぞれ 1となるような自然単位系を選んでいた。
ここでしばらく ℏや cをあらわに用いて記述するとどうなるかを簡単に見ていく。
まず ℏと cの次元を見ていく。決めごととして次元を表す記号を質量M、長さ L、時間 T とする。また計算を簡
単にするためにエネルギー E = ML2/T 2、運動量 P = ML/T とする。これらを使って ℏの次元は [ℏ] = E · T =

PL =ML2/T 2であり光速の次元は [c] = L/T となる。ラグランジアン密度の次元はエネルギー密度の次元に等し
く、従ってラグランジアンの次元は ET に等しい。従って経路積分においては指数の肩にある数は無次元量である
ので

Z = exp

(
i

ℏ

∫
d4xL

)
(1)

のようになる。同じ理由で場をフーリエ積分表示する際には eip·x は

exp

(
i

ℏ
p · x

)
(2)

のように書き換わる。従ってこれを xで積分することにより∫
d3x · exp

(
i

ℏ
(p1 − p2) · x

)
= (2πℏ)3δ(3)(p1 − p2) (3)

が得られるのでデルタ関数の次元が換算できる。左辺の次元が L3 であり右辺の次元が [ℏ3] = P 3L3 であるので
[δ(3)(p)] = P−3である。生成消滅演算子の交換関係に現れるデルタ関数はここで現れるデルタ関数と関係している
ので ℏを 1にとらなければ

[a(p1), a
†(p2)] = (2πℏ)32Eδ(3)(p1 − p2) (4)

と修正される。従って [a(p)] = [a†(p)] = E
1
2L

3
2 となる。基本的にこのような容量で ℏや cを付けるように修正す

ることができる。

3 場の量子論のノーテーションについて
場の量子論のノートでは主に相対論的なローレンツ不変なノーテーションを用いてきた。これに対して運動量積
分をローレンツ不変性が保たれていない形で表記する流儀もある。本によってはそのようなノーテーションを選ん
でいる場合もある。初学者は本によってこのようなノーテーションに違いがあることによって混乱することがある
かもしれない。このノーテーションの違いによって基本的な物理量が一見すると異なる定義がなされているように
思ってしまうかもしれない。なのでこのノートでそれらの本ごとのノーテーションの違いによる異なる物理量の表
面上の表記の読み替えが容易となるように理解を促したい。
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最初に場の量子論ノートで用いた場のフーリエ積分表示

ϕ(x) =

∫
d3p

(2π)32p0
(a(p)eipx + a†(p)e−ipx) (5)

に現れる運動量積分の部分がローレンツ不変であることを見ておく。これは次の積分∫
d4p · δ(p2 +m2)θ(p0) (6)

を考えると良い。これは静止質量がmの粒子の取りうる運動量・運動エネルギーにわたる積分になるのでローレン
ツ不変である。これを変形すると∫

d4p · δ(p2 +m2)θ(p0) =

∫
d3pdE · δ(E2 − (p2 +m2))δ(E) (E は off shell)

=

∫
d3p

dt

2E
δ(t− (p2 +m2))δ(E) (t = E2)

=

∫
d3p

2E
(E =

√
p2 +m2) (7)

となる。従って運動量積分を一度この表示で行うとローレンツ変換した後でも同じ表示が保たれる。
場の量子論の本によるノーテーションの違いは生成消滅演算子の違いに吸収すると理解しやすい。場の量子論ノー
トとは異なるノーテーションでよく行われるのは、生成消滅演算子の交換関係を次のように定義する。即ち場の量
子論ノートとは異なるノーテーションで定義された生成消滅演算子を an(p)とすると

[an(p1), a
†
n(p2)] = δ(3)(p1 − p2) (8)

となるようように定義する。この生成消滅演算子についている nは生成消滅演算子が規格化 (normalized)されてい
ることを表す。これは場の量子論ノートで定義した生成消滅演算子 a(p)との間に

an(p) =

√
1

(2π)32E
· a(p) (9)

なる関係がある。従ってこの関係を使って場の量子論ノートの全ての計算を置き換えることで翻訳することができ
る。あるいは本によってはこの関係式から (2π)3を除いた関係の場合もある。有名なペスキンの本 [2]ではそのよう
になっているようである。ここでは後の章でもこのノーテーションで定義した生成消滅演算子 anを使うのでこちら
のノーテーションを採用した。このノーテーションで定義した消滅演算子はローレンツ変換 p→ p′ = Λpに対応す
るローレンツ群のユニタリー演算子 U(Λ)のもと

U(Λ)an(p)U
†(Λ) =

√
E′

E
an(Λp) (10)

と変換する。場のフーリエ積分表示は

ϕ(x) =

∫
d3p√
(2π)32E

(
an(p)e

ipx + a†n(p)
)

(11)

となる。これはもともとがローレンツ不変な積分であったのでローレンツ不変ではある。ただし運動量積分の積分
要素の部分はもはやローレンツ不変ではなく p′ = Λpに対して∫

d3p√
(2π)32E

=

∫
d3p′√
(2π)32E′

√
E

E′
(12)

のように変換する。
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最後に、場の量子論ノートではハミルトニアンが

H =

∫
d3p

(2π)32E
E

(
a†(p)a(p) +

1

2
[a(p), a†(p)]

)
(13)

と表されたが、このノーテーションではハミルトニアンが系の全エネルギーであること、即ち 1粒子のエネルギー
E = ℏwの粒子の個数がNE であるときに

∑
E ENE であるというよく知られた光量子仮説の表現が見えにくい。こ

こでのノーテーションを使うとハミルトニアンH は

H =

∫
d3p

(2πℏ)32E
Ea†(p)a(p)

=

∫
d3p · Ea†n(p)an(p) (14)

と書き換えられてよりそのことが見えやすいという利点がある。不利な点はやはりローレンツ不変な表記ではない
ということである。ここで前節での次元解析を持ち出すと ℏを 1ととらなければ

an(p) =

√
1

(2πℏ)32E
a(p) (15)

であり、[a(p)] = E
1
2L

3
2 であることから [an(p)] = P−

3
2 である。従って次元解析により H は実際にエネルギーの

次元を持つし、 ∫
d3p

(2π)32E
a†(p)a(p) =

∫
d3p · a†n(p)an(p) (16)

は無次元となり、個数演算子として解釈することができる。a†n(p)an(p)は運動量空間における運動量 pの粒子の個
数密度であるとも言える。

4 場の量子論から相対論的量子力学を導出する
一般的には量子力学を学習していくといずれ相対論的な量子力学に触れる機会があると思う。素粒子理論を学習
しようと思うならば、さらに学習を進めて場の量子論へ進むことになると思う。場の量子論は量子力学の枠組みで
定式化されているとはいえ、場の量子論と量子力学との間にはいくらかギャップがあるように思う。量子力学では
粒子の波動関数を扱っていたのに場の量子論になると場の演算子というものを扱うようになり、波動関数はいつの
まにか見かけなくなる。しかし量子力学と場の量子論との関係は関係のない別の領域の物理ではないし、別の物理
現象を表しているものでもない。例えば水素原子のクーロン散乱は量子力学の枠組みでも扱えるし場の量子論の枠
組みで扱うこともできる。これらは異なる理論として理解されるが本質的には量子力学と場の量子論との違いは粒
子の生成消滅を扱うか扱わないかだけである。従って場の量子論での粒子の生成消滅を扱わないフェーズにおいて
相対論的量子力学の枠組みの導出ができないかということをこの章で議論する。即ち量子化した場を扱う理論から
場を量子化する前の理論の導出を試みる。この関係は粒子の運動を量子化した量子力学から粒子の運動を量子化す
る前の古典力学を導出するWKB近似を思い出させるが、この場合にはどちらも量子論であるので場の量子論から
近似として相対論的量子力学が出てくる訳ではない。粒子の生成消滅を扱う部分だけを落としたものとして相対論
的量子力学の枠組みを導出する。
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4.1 実スカラー場
この章では実スカラー場の相対論的な場の量子論の枠組みから相対論的な量子力学の導出を試みる。導出後のノー
テーションを一般的な量子力学でのノーテーションに合わせるために前節で導入した an(p)を用いる。即ち

an(p) =

√
1

(2π)32E
a(p) (17)

を扱う。a(p)は場の量子論のノートで定義されている生成消滅演算子である。このノーテーションの生成演算子で
定義された運動量の固有ベクトルは場の量子論ノートで定義された運動量ベクトル |p⟩を規格化したものを定義す
る。即ち

|p⟩n =

√
1

(2π)32E
|p⟩

= a†n(p) |0⟩ (18)

書いた時、この |p⟩n に対して

⟨p|p′⟩n = δ(3)(p− p′) (19)

となる。ここで n⟨p|と |p′⟩nとの内積は単に ⟨p|p′⟩nと書いている。⟨p|と |p′⟩nとの内積という風に規格化されてい
ない状態ベクトルと規格化されている状態ベクトルとの内積を取ることはノーテーション違いのため通常はないの
で混乱の恐れはないと思う。1の分解は 1粒子状態に関しては

1 =

∫
d3p · |p⟩n n⟨p| (20)

となる。この規格化された運動量ベクトルの重ね合わせをした状態として

|x⟩n =

∫
d3p

(2π)3/2
· e−ipx |p⟩n (21)

を考えると、この状態は以下の理由から量子力学での位置の固有状態という風に解釈できる。この |x⟩nと運動量の
固有状態 |p⟩n との積は簡単な計算により

⟨p|x⟩n =
1

(2π)3/2
e−ipx (22)

となることがわかる。この関係から |x⟩nが量子力学での位置の固有状態と同一のものであることがわかる。なぜな
ら位置の固有状態が別にあるとする。それを |x⟩とする。|x⟩と運動量の固有状態の積もまた (22)で与えられるが、
|p⟩n は 1粒子状態に対して完全系をなすため |x⟩と |x⟩n は結局同一のものであることになるからである。同時刻で
の位置の固有状態どうしをかけると

⟨y|x⟩n =

∫
d3p

(2π)3
e−ip(x−y)

= δ(3)(x− y) (x0 = y0の時) (23)

となる。ここで 1粒子状態の重ね合わせで表される状態だけを考えると、そのような任意の規格化された状態ベク
トル |φ⟩n に対して

|φ⟩n =

∫
d3p |p⟩n ⟨p|φ⟩n

=

∫
d3p · φ(p) |p⟩n (24)
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と表される。ここで φ(p) = ⟨p|φ⟩n もまた ∫
d3p · |φ(p)|2 = 1 (25)

と規格化されている。|φ⟩n はもちろんエネルギー・運動量演算子の固有状態ではないが個数演算子の固有値 1の固
有状態となっている。この意味において |φ⟩nは 1粒子状態である。この 1粒子の状態ベクトルと |x⟩nとの内積を取
ると

⟨x|φ⟩n =

∫
d3p

(2π)3/2
· eipxφ(p)

= φ(x) (26)

が得られる。ここで得られた ⟨x|φ⟩n = φ(x)はクライン-ゴルトン方程式を満たす。こうして得られた φ(x)が相対
論的量子力学における古典的な場である。ここで得られた相互作用のないクライン-ゴルトン場に関しては

⟨φ|φ⟩n =

∫
d3x · ⟨φ|x⟩n ⟨x|φ⟩n

=

∫
d3x · |φ(x)|2

= 1 (27)

を時間微分すると (26)の表式を用いると 0となことが容易に確認できる。従って |φ(x)|2の全空間積分は保存する。
このことはよく言われるクライン-ゴルトン場が確率解釈ができないとする議論とは反するように思われるが、一般
的に言われるその事象は |φ(x)|2の全空間積分ではないものについて言及してるので実はその言明とは反しない。も
う少し具体的に言及しておくと一般的に議論されるクライン-ゴルトン場の確率の保存とは∫

d3x · ρ =
i

2m

∫
d3x · (φ∗(x)∂0φ(x)− ∂0φ

∗(x)φ(x)) (28)

を確率であると解釈しておいて、これが連続の方程式を満たす代わりに確率としての解釈ができないことを議論す
る。一方で素直に |φ(x)|2の全空間積分をとったものに関しては問題なくその時間微分は 0となる。即ち保存する。
一般的な相互作用がある場合においてもハミルトニアンが自己エルミートである通常の場の量子論であればやはり
確率は保存する。初期状態 |φ⟩nに対して時刻 tでの状態はシュレディンガー描像で |φt⟩n = Ut |φ⟩n (Ut = e−iHt)で
あるので

⟨φt|φt⟩n = ⟨φ|U †t Ut|φ⟩n
= ⟨φ|φ⟩n
= 1 (29)

となり、時間に依存しないために保存する。
運動量空間の生成消滅演算子の代わりに時空の座標 xの点における生成消滅演算子 b(x)、b†(x)を構成すること
もできる。この b(x)と an(p)とはフーリエ変換の関係にある。即ち

b(x) =

∫
d3p

(2π)3/2
eipxan(p), b†(x) =

∫
d3p

(2π)3/2
e−ipxa†n(p) (30)

である。|x⟩n = b†(x) |0⟩である。これらの交換関係は x0 = x́0 の時は、

[b(x), b†(x́)] = δ(3)(x− x́) (31)
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x0 ̸= x́0 の時は

[b(x), b†(x́)] =

∫
d3p

(2π)3
e−ip·(x−x́)eiE(x0−x́0) (32)

である。これらは a(p) (a†(p))あるいは an(p) (a
†
n(p))が運動量 pの生成消滅演算子であるのに対して、b(x) (b†(x))

は時空の座標 xの生成消滅演算子として振る舞う。
b(x)と場の演算子 ϕ(x)との交換関係や、位置の演算子Xµを b(x)、b†(x)から構成することをこれから行ってみ
る。最初に場の演算子と類似の関係

⟨p|b†(x)|0⟩n =
e−ipx

(2π)3/2
(33)

⟨0|b(x)|p⟩n =
eipx

(2π)3/2
(34)

が得られる。また、通常の場の演算子 ϕ(x) = ϕ+(x) + ϕ−(x)に対して b(x)との交換関係は

[b(x1), ϕ−(x2)] =

∫
d3p

(2π)3
√
2E

eip(x1−x2), [ϕ+(x1), b
†(x2)] =

∫
d3p

(2π)3
√
2E

e−ip(x1−x2) (35)

となる。
位置の演算子Xµ は

Xµ =

∫
d3x · xµb†(x)b(x) (36)

と定義できる。この時 |x⟩n = b†(x) |0⟩は

Xµ |x⟩n = xµ |x⟩n (37)

となり、位置の演算子 Xµ の固有値 xµ の固有状態となっていることがわかる。この位置の演算子は 2粒子以上が
存在する状態に対してはそれらの粒子の位置の和が固有値として得られるが複数の粒子の位置の和は一般的には何
か有用な意味のある物理量ではない。この演算子の空間成分は 1粒子状態に対してのみ量子力学で登場する位置の
演算子と同一視することができる。第 0成分に関してはその粒子が存在する時刻を表していると言える。
次に運動量・エネルギー演算子を見てみる。運動量・エネルギーの演算子は an, a

†
n を用いると

Pµ =

∫
d3p · pµa†n(p)an(p) (38)

と書ける。量子力学でおなじみの位置の演算子と運動量の演算子との交換関係はこれから容易に導かれる。an と b

との交換関係は

[b(x), a†n(p)] =
eipx

(2π)3/2
, [an(p), b

†(x)] =
e−ipx

(2π)3/2
(39)
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となるのでこれらを用いると、Xµ と Pµ との交換関係は

[Xµ, P ν ] =

∫
d3xd3p · xµpν [b†(x)b(x), a†n(p)an(p)]

=

∫
d3xd3p · xµpν

(
b†(x)an(p)[b(x), a

†
n(p)] + a†nb(x)[b

†(x), an(p)]
)

=

∫
d3x · xµb†(x)

(∫
d3p

(2π)3/2
pνeipxan(p)

)
−
∫
d3x · xµ

(∫
d3p

(2π)3/2
pνe−ipxa†n(p)

)
b(x)

=

∫
d3x · xµ

(
b†(x)

1

i

∂b(x)

∂xν
+

1

i

∂b†(x)

∂xν
b(x)

)
=

1

i

∫
d3x · xµ ∂

∂xν

(
b†(x)b(x)

)
=

1

i

∫
d3x

(
∂

∂xν

(
xµb†(x)b(x)

)
− b†(x)b(x)ηµν

)
= iηµν

∫
d3x · b†(x)b(x) (40)

となる。1粒子状態だけに限るならば b†bの全空間積分は個数演算子なので 1に等しく、従って空間部分だけを取り
出すとよく知られた量子力学の交換関係 [xi, pj ] = iδij が得られる。
次に多粒子状態を考える。簡単に 2粒子状態を考える。2粒子状態の 1の分解1は

1 =
1

2!

∫
d3p1d

3p2 |p1,p2⟩n n⟨p1,p2| (41)

である。規格化された 2粒子状態 |φ⟩n に対して

|φ⟩n =
1

2

∫
d3p1d

3p2 · |p1,p2⟩n ⟨p1,p2|φ⟩n (42)

であるが、これに 2粒子の運動量の固有状態 n⟨p1,p2|をかけると

⟨p1,p2|φ⟩n =
1

2
(⟨p1,p2|φ⟩n + ⟨p2,p1|φ⟩n) (43)

なので

⟨p1,p2|φ⟩n = ⟨p2,p1|φ⟩n (44)

となり、p1、p2 に関して対称である。一般的な多粒子状態に対しても同様に n!の組み合わせすべてが等しいこと
が示される。これもまた量子力学でのボソンの多粒子状態に対しての良く知られた性質である。もっとも単純に 2

粒子状態を定義すると

|φ1, φ2⟩n =

∫
d3p1d

3p2 · φ1(p1)φ2(p2) |p1,p2⟩n (45)

の形になると思う。この場合には n⟨p1,p2|との内積をとると

⟨p1,p2|φ1, φ2⟩n = φ1(p1)φ2(p2) + φ1(p2)φ2(p1) (46)

と表される。これは |x1, x2⟩n = b†(x1)b
†(x2) |0⟩をかけて空間の座標での表示でも同様である。即ち

⟨x1, x2|φ1, φ2⟩n = φ1(x1)φ2(x2) + φ1(x2)φ2(x1) (47)

1一般的なすべての粒子状態を含む 1 の分解は [1] を参照されたい。
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となる。2粒子状態の空間の座標表示での 1の分解は

1 =
1

2!

∫
d3x1x2 · |x1, x2⟩n n⟨x1, x2|

=
1

2!

∫
d3x1x2

d3p1

(2π)3/2
d3p2

(2π)3/2
d3p3

(2π)3/2
d3p4

(2π)3/2
e−i(p1x1+p2x2)ei(p3x1+p4x2) |p1,p2⟩n n⟨p3,p4|

=
1

2!

∫
d3p1d

3p2 · |p1,p2⟩n n⟨p1,p2| (48)

で与えられるので運動量表示と全く同じ議論ができる。一般的な多粒子状態の 1の分解の座標表示は

1 =

∞∑
n=0

1

n!

∫
d3x1 · · · d3xn · |x1, · · · , xn⟩n n⟨x1, · · · , xn| (49)

で与えられる。
ここまでのことをまとめると実スカラー場の量子論から 1粒子状態を取り出して、粒子の生成消滅を考慮しなけれ
ば相対論的量子力学、あるいはその非相対論的な領域では非相対論的な量子力学の基本的な枠組みが抽出できるこ
とがわかった。通常量子力学で扱うのは複素場であったり電子であったりするのでこれから複素スカラー場とDirac

場においても同様の導出が可能であることをこれから見ていく。

4.2 複素スカラー場
複素スカラー場の場合は実スカラー場の場合とほぼ類似で実スカラー場のコピーがひとつ加わったようなものに
なる。実スカラー場のときと同じように規格化された生成消滅演算子

a†n(p) =

√
1

(2π)32E
a†(p), ac†n (p) =

√
1

(2π)32E
ac†(p) (50)

を定義する。acは複素スカラー場の時に現れる荷電共役（反粒子）に関する生成消滅演算子を表す。荷電共役とは
対象の粒子と全て大きさが等しく符号が反対の量子数を持ち、それ以外は対象の粒子とまったく同じ性質を持つ粒
子のことである。ここでいう量子数とは電荷などのゲージ対称性に起因する相互作用の結合の強さである。電子の
電荷 eに対しては −eがそれにあたる。これらは復習のために場の量子論ノートも参照されたい。運動量の固有状
態は粒子のものと反粒子のものがある。

|p⟩n =

√
1

(2π)32E
|p⟩ , |p̄⟩n =

√
1

(2π)32E
|p̄⟩ (51)

さらに交換関係

[an(p1), a
†
n(p2)] = [acn(p1), a

c†
n (p2)] = δ(3)(p1 − p2) (52)

[an(p1), an(p2)] = [acn(p1), a
c
n(p2)] = 0 (53)

が成り立つ。運動量の固有状態も規格化されている。

⟨p|ṕ⟩n = δ(3)(p− ṕ), ⟨p̄|´̄p⟩n = δ(3)(p− ṕ), ⟨p|´̄p⟩n = 0 (54)

複素スカラー場の表す粒子と反粒子の規格化された 1粒子状態 |φ⟩n および |φc⟩n は

|φ⟩n =

∫
d3p · φ(p) |p⟩n , |φc⟩n =

∫
d3p · φc(p) |p̄⟩n (55)
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である。粒子と反粒子の位置の固有状態はそれぞれ

|x⟩n =

∫
d3p

(2π)3/2
· e−ipx |p⟩n , |x̄⟩n =

∫
d3p

(2π)3/2
· e−ipx |p̄⟩n (56)

である。複素スカラー場の場合にも同時刻の位置の固有状態は直交する。

⟨y|x⟩n =

∫
d3p

(2π)3
e−ip(x−y)

= δ(3)(x− y) (x0 = y0の時) (57)

荷電共役な粒子の位置の固有状態も同様である。相対論的量子力学における複素スカラー場、即ちクライン-ゴルト
ン方程式を満たす複素スカラーの古典場は

⟨x|φ⟩n =

∫
d3p

(2π)3/2
· eipxφ(p), ⟨x̄|φc⟩n =

∫
d3p

(2π)3/2
· eipxφc(p) (58)

である。荷電共役を区別しないならば

ϕ(x) =

∫
d3p

(2π)3/2
(
eipxφ(p) + e−ipxφ∗c(p)

)
(59)

としてまとめられる。位置 xの生成消滅演算子も実スカラー場と同様に

b(x) =

∫
d3p

(2π)3/2
eipxan(p), b†(x) =

∫
d3p

(2π)3/2
e−ipxa†n(p) (60)

である。反粒子の位置の生成消滅演算子は

bc(x) =

∫
d3p

(2π)3/2
eipxacn(p), bc†(x) =

∫
d3p

(2π)3/2
e−ipxac†n (p) (61)

であり、交換関係は

[b(x), b†(y)] = [bc(x), bc†(y)] =

∫
d3p

(2π)3
eip(x−y)

= δ(3)(x− y) (x0 = y0の時) (62)

となる。位置の演算子は粒子のものと反粒子のものがあり、

Xµ =

∫
d3x · xµb†(x)b(x), X̄µ =

∫
d3x · xµbc†(x)bc(x) (63)

となる。運動量・エネルギー演算子も粒子のものと反粒子のものとで定義すると位置の演算子との交換関係は実ス
カラーの時とまったく同様の交換関係が粒子のものと反粒子のものとで得ることができる。

4.3 Dirac場
Dirac場の場合は生成消滅演算子が反交換関係になるのと、場がスピノール表現となるために少しだけ複雑さが
増すが流れはほとんど同様である。規格化された生成演算子は粒子と反粒子のものそれぞれ

(an)
†
s(p) =

√
1

(2π)32E
a†s(p), (acn)

†
s(p) =

√
1

(2π)32E
ac†s (p) (64)
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である。消滅演算子はこのエルミート共役である。運動量の固有状態は

|p, s⟩n =

√
1

(2π)32E
|p, s⟩ , |p̄, s̄⟩n =

√
1

(2π)32E
|p̄, s̄⟩ (65)

となる。フェルミオンなので添え字がつく。添え字は s = 1, 2である。これらは規格直交化されている。

⟨p, s|ṕ, r⟩n = δ(3)(p− ṕ)δsr, ⟨p̄, s̄|´̄p, r̄⟩n = δ(3)(p− ṕ)δsr, ⟨p, s|´̄p, r̄⟩n = 0 (66)

Dirac場の規格化された生成消滅演算子の反交換関係は

{(an)s(p), (an)†r(ṕ)} = δ(3)(p− ṕ)δrs, {(acn)s(p), (acn)†r(ṕ)} = δ(3)(p− ṕ)δrs (67)

となり今回もスッキリする。一般的な個数演算子の固有値 1の固有状態、即ち 1粒子状態 |ψ⟩n は

|ψ⟩n =

∫
d3p

2
√
E

∑
s=1,2

us(p)ψ(p) |p, s⟩n

|ψc⟩n =

∫
d3p

2
√
E

∑
s=1,2

vs(p)ψc(p) |p̄, s̄⟩n (68)

となる。2 ここで係数の 1
2 は |ψ⟩n は規格化因子であり、慎重に計算して確認することで実際にこの因子を付けると

規格化されることが確認できる。計算では以下の関係を使うと良い。即ち

ūr(p)γ
µus(p) = 2pµδrs (69)

特に µ = 0の時

u†r(p)us(p) = 2Eδrs (70)

である。vs(p)に関しても同様である。位置の固有状態は

|x⟩n =

√
1

2

∫
d3p

(2π)3/2

∑
s=1,2

e−ipx |p, s⟩n , |x̄⟩n =

√
1

2

∫
d3p

(2π)3/2

∑
s=1,2

eipx |p̄, s̄⟩n (71)

である。こちらも規格化のために
√

1
2 の因子がついているがこちらの方は確認するのが容易だと思われる。

⟨y|x⟩n =

∫
d3p

(2π)3
e−ip(x−y)

= δ(3)(x− y) (y0 = x0の時) (72)

となり実際に規格直交化されている。スカラー場の時との類似で Dirac方程式を満たす古典場が

⟨x|ψ⟩n =

∫
d3p

(2π)3/2
√
2E

∑
s=1,2

eipxus(p)ψ(p), ⟨x̄|ψc⟩n =

∫
d3p

(2π)3/2
√
2E

∑
s=1,2

e−ipxvs(p)ψc(p) (73)

として得られる。ここでこれらの古典場を

ψ(x) =

√
1

2

∫
d3p

(2π)3/2
√
2E

∑
s=1,2

eipxus(p)ψ(p), ψc(x) =

√
1

2

∫
d3p

(2π)3/2
√
2E

∑
s=1,2

e−ipxvs(p)ψc(p) (74)

2この ψ(p) はグラスマン数の関数ではなく、通常の関数である。
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と書くことにする。
√

1
2 の factorは規格化因子である。即ちこれらの古典場は規格化されている。(70)の関係を

使って ∫
d3x · |ψ(x)|2 =

∫
d3p · |ψ(p)|2

= 1 (75)

であることが確認できる。ψc(x)についても同様である。これらの古典場は Dirac方程式

(−i∂/+m)ψ = 0, (−i∂/+m)ψc = 0 (76)

を満たす。従ってDirac方程式を満たす古典的なDirac場と見なせる。ψc(x)は相対論的量子力学でDirac方程式の
負エネルギー解と見なされたものである。
粒子の位置の生成消滅演算子は

b(x) =

√
1

2

∫
d3p

(2π)3/2

∑
s=1,2

eipx(an)s(p), b†(x) =

√
1

2

∫
d3p

(2π)3/2

∑
s=1,2

e−ipx(an)
†
s(p) (77)

である。反粒子の位置の生成消滅演算子は

bc(x) =

√
1

2

∫
d3p

(2π)3/2

∑
s=1,2

eipx(an)s(p), bc†(x) =

√
1

2

∫
d3p

(2π)3/2

∑
s=1,2

e−ipx(an)
c†
s (p) (78)

となる。ここでも規格化の因子
√

1
2 がついている。位置の生成消滅演算子の反交換関係は

{b(x), b†(y)} = {bc(x), bc†(y)} =

∫
d3p

(2π)3
eip(x−y)

= δ(3)(x− y) (x0 = y0の時) (79)

となる。スカラー場の時と同様に位置の演算子も同様にして定義できて、この場合にも 1粒子状態に制限すれば量
子力学においての位置の演算子となる。粒子の位置の演算子は

Xµ =

∫
d3x · xµb†(x)b(x) (80)

であり、

|x⟩n = b†(x) |0⟩ (81)

なので

Xµ |x⟩n = xµ |x⟩n (82)

となり |x⟩n はXµ の固有値 xµ の固有状態である。粒子の運動量・エネルギー演算子は（反粒子は含まない）

Pµ =

∫
d3p

∑
s=1,2

pµ(an)
†
s(p)(an)s(p) (83)

12



であるので、運動量・エネルギー演算子との交換関係を計算すると

[Xµ, P ν ] =
∑
s=1,2

∫
d3xd3p · xµpν [b†(x)b(x), (an)†s(p)(an)s(p)]

=
∑
s=1,2

∫
d3xd3p · xµpν

[
b†(x)(an)s(p)

{
b(x), (an)

†
s(p)

}
− (an)

†
sb(x)

{
b†(x), (an)s(p)

}]
=
∑
s=1,2

∫
d3x · xµb†(x)

(√
1

2

∫
d3p

(2π)3/2
pνeipx(an)s(p)

)
−
∑
s=1,2

∫
d3x · xµb(x)

(√
1

2

∫
d3p

(2π)3/2
pνe−ipx(an)

†
s(p)

)

=

∫
d3x · xµ

(
b†(x)

1

i

∂b(x)

∂xν
+

1

i

∂b†(x)

∂xν
b(x)

)
=

1

i

∫
d3x · xµ ∂

∂xν

(
b†(x)b(x)

)
=

1

i

∫
d3x

(
∂

∂xν

(
xµb†(x)b(x)

)
− b†(x)b(x)ηµν

)
= iηµν

∫
d3x · b†(x)b(x) (84)

となりスカラー場の時と同様に量子力学での位置と運動量の交換関係が得られた。
Dirac場の多粒子状態を考える。ここで位置の固有状態を次のように分解する

|x, s⟩n =

∫
d3p

(2π)3/2
e−ipx |p, s⟩n , |x⟩n =

√
1

2

∑
s=1,2

|x, s⟩n (85)

また生成消滅演算子も

bs(x) =

∫
d3p

(2π)3/2
eipx(an)s(p), b(x) =

√
1

2

∑
s=1,2

bs(x) (86)

のようにわける。このようにすると 1の分解の粒子部分は

1 =

∞∑
n=0

∑
s1,··· ,sn=1,2

1

n!

∫
d3x1 · · · d3xn · |x1, s1, · · · , xn, sn⟩n n⟨x1, s1, · · · , xn, sn| (87)

となる。ここで特に 2粒子の位置の固有状態は

|x1, s, x2, r⟩n = b†s(x1)b
†
r(x2) |0⟩

=

∫
d3p1

(2π)3/2
d3p2

(2π)3/2
e−i(p1x1+p2x2) |p1, s,p2, r⟩n (88)

となる。2粒子状態は

|ψ1, ψ2⟩n =

∫
d3p1

2
√
E1

d3p2

2
√
E2

∑
s,r=1,2

ψ1s(p1)ψ2r(p2) |p1, s,p2, r⟩n (89)

となる。ここで ψs(p) = us(p)ψ(p)と置いた。また ψ1, ψ2にある添え字は単に 2つの粒子を区別するためについて
いる。|x, s⟩n と |p, r⟩n との内積は

⟨x, s|p, r⟩n =
eipx

(2π)3/2
· δsr (90)

なので

⟨x1, s, x2, r|ψ1, ψ2⟩n = ψ1r(x2)ψ2s(x1)− ψ1s(x1)ψ2r(x2) (91)
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となる。ここで ψs(x) = ψ1s(x)または ψs(x) = ψ2s(x)に対して

ψs(x) =

√
1

2

∫
d3p

(2π)3/2
√
2E

· eipxψs(p) (92)

である。得られた ⟨x1, s, x2, r|φ1, φ2⟩nは x1, sのペアと x2, rのペアの入れ替えに関して反対称な性質であることが
わかる。一般的な多粒子状態に関しても同様である。即ちフェルミオンの場合でも量子力学での多粒子状態の性質
である反対称性が得られた。

5 ボソンの場の多粒子状態について
前章では 1粒子状態を考えることから古典場の導出を行った。しかし古典場で現れる場は必ずしも 1粒子状態で
あるとは限らない。例えば光子の場合を考えてみる。電磁場があるときに光子が何個あるかというのは一般に見積
もるには次のようにするといいだろう。統計力学によれば温度 T の熱浴中にある熱平衡にある系はカノニカル分布
に従う。系の中の電磁場のエネルギーはプランク分布

ε(w) =
ℏw

eℏw/kT − 1
(93)

に従う。ここで wは電磁場の角振動数である。また零点エネルギーを無視した。一方角振動数 wの光子 1個の持つ
エネルギーは ℏwで与えられる。もし系に角運動量 wの光子がNw 個存在するならば系に存在する電磁場のエネル
ギーは ∫ dw · ℏwNw で与えられる。従ってこのことから系には各振動数 wの光子は

Nw =
1

eℏw/kT − 1
(94)

の数だけ存在すると概算できる。
以上の話を踏まえて話を元に戻すと、光子 1個のエネルギー Eは ℏ = 1の自然単位系を選べば、その角振動数 w

との関係は E = wである。従って系に存在するエネルギー E の光子の状態は

a†(p1)a
†(p2) · · · a†(pNw) |0⟩ (95)

の重ね合わせのようになっている。ここで p1, p2, · · · pNw
の第 0成分はすべて E である。ここで話を簡単にするた

めに光子の代わりに質量を持たないスカラー場で議論を行う。上の式でも生成演算子にはヘリシティの自由度は省
略してスカラー場のものとして書いている。以下においても質量を持たないスカラー場をここでは光子と呼んでお
く。光子のうち、エネルギーが E で運動量が pのものだけに制限すると

|p, n⟩ =
√

1

n!
(a†n(p))

n |0⟩

=

√
1

n!
|p, · · ·p⟩n (96)

の状態となる。
√

1
n! の factorは規格化因子である。これに対して位置 xに光子が n個存在する状態は

|x, n⟩n =

√
1

n!
(b†(x))n |0⟩

=

√
1

n!

∫
d3p1

(2π)3/2
d3p2

(2π)3/2
. . .

d3pn

(2π)3/2
e−ip1xe−ip2x . . . e−ipnx |p1,p2, . . . ,pn⟩n (97)

となるのでこれらの内積を取ると

⟨p, n|x, n⟩n =
1

(2π)3n/2
ei(np)x (98)
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となる。即ち運動量 pの光子が n個存在する状態はあたかも運動量が npでエネルギーが nEの場として見なせる。
これは粒子が質量を持つボソンの粒子の場合も同様に議論ができる。なぜなら質量mを持っている場合には粒子 1

個のエネルギーは E =
√
p2 +m2であり、これの n個の和を取ったものは nE = n

√
p2 +m2 =

√
(np)2 + (nm)2

なので、npと nE とでローレンツ共役な 4元ベクトルをなす。従って質量を持つ場合にもローレンツ変換のもと
(98)は不変である。従って質量が 0の場合でも 0でない場合でも n個の運動量 pの粒子を集めた状態 (98)はローレ
ンツ不変であり、場の 4元運動量 npのモードとして見なすことができる。(98)の右辺にある分母はあまり重要で
はない。これは改めて規格化を行うことで無くなってしまう。一般的にはあらゆる方向に対する光子の状態、およ
びあらゆるエネルギーに対する和を取ることで標準的なフーリエ積分表示の形で場を表すことができる。従って古
典的なボソンの場においてはエネルギー Eのモードには 1粒子のみではなく多粒子が含まれることになる。電子や
陽子、原子などのフェルミオンの多粒子状態ではこのようにはならない。パウリの排他律があるから複数の同種粒
子が同じ運動量にはなりえないからである。これはフェルミオンの場合の反交換関係から自然に導かれる。フェル
ミオンの 1粒子状態の非相対論的な極限が通常の電子や陽子や原子などの量子力学となる。なお相対論的な量子力
学に置ける 1粒子の Dirac場の非相対論的な極限に置いて、1粒子のシュレディンガー方程式が現れる議論などは
例えば [3]を参照されたい。たくさんの光子からなる古典場のうち 1つの光子が別の種類の粒子と相互作用して吸
収あるいは放出されると、その分の光子の相当するエネルギーと運動量が増減するが、ℏが十分に小さく見えるエ
ネルギー領域ではその増減は連続的に見えるので、古典的な場の描像が近似的に成立することが理解できる。1光
子の状態を見れば、1つの光子が吸収されたり放出されたりすることで粒子としての描像が得られる。

6 場の量子論の経路積分の導出
最後に場の量子論の正準量子化から出発して場の量子論に置ける経路積分を導出する。場の量子論ノート [1]では
生成消滅演算子を導入することから出発しているが、これから行う正準量子化から出発しても自然と生成消滅演算
子が現れることが示される。正準量子化を用いる理由は経路積分が良く知られた形で、即ち指数の肩にラグランジ
アンが乗っている形で得られるからである。生成消滅演算子から直接経路積分を得る試みは少なくとも良く知られ
た形を得るためにはあまり上手くいかない。そのことを大まかに見るには経路積分ノート [4]での調和振動子の生成
消滅演算子からの経路積分の導出を参照すると良いかもしれない。そこでも生成消滅演算子から出発して経路積分
を導出すると指数の肩にはきれいなラグランジアンの形として現れない。同じような問題が場の量子論でも生成消
滅演算子を出発点にして経路積分を導出しようとすると生じる。なのでここでは正準量子化を導入してから経路積
分を導出する。従来の生成消滅演算子での場の量子論の記述との整合性をとるために正準量子化した場から生成消
滅演算子を定義できることを示してそれらの関係を与える。

6.1 実スカラー場の場合
まず最も基本的な実スカラー場の量子論から経路積分を導出することを試みる。量子力学ノート [4]によれば、経
路積分は量子力学のシュレディンガー表示から出発する。従って場の量子論で経路積分を導出するときもシュレディ
ンガー表示から出発する。シュレディンガー表示での実スカラー場 ϕ(x)およびその正準共役な場 Π(x)をフーリエ
積分表示する。

ϕ(x) =

∫
d3p

(2π)3E
Q(p)eip·x, Π(x) =

∫
d3p

(2π)3
P (p)e−ip·x (99)

ここで ϕ(x)が実スカラー場である、即ち実関数である、従ってその正準共役な Π(x)もまた実関数であるというこ
とから

Q†(p) = Q(−p), P †(p) = P (−p) (100)
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の関係がある。ϕ(x)と Π(x)は正準共役な関係にあるので場の演算子の交換関係

[ϕ(x),Π(y)] = iδ(3)(x− y) (101)

がある。この交換関係を導入することが正準量子化の手続きである。これからQ(p), P (p)に関する交換関係が得ら
れる。即ち

[Q(p1), P (p2)] = i(2π)3Eδ(3)(p1 − p2) (102)

となる。実スカラー場のハミルトニアンH をこれら Q(p)や P (p)を用いて表すと、

H =
1

2

∫
d3x

(
Π2(x) + (∇ϕ(x))2 +m2ϕ2(x)

)
=

1

2

∫
d3p

(2π)3
(
P †(p)P (p) +Q†(p)Q(p)

)
(103)

となる。量子力学の一般的な枠組みでは、ハミルトニアンH と場の演算子 ϕ(x)との交換関係は ϕ(x)の時間微分を
与える。実際には今はシュレディンガー表示なので場 ϕ(x)は時間に依存せず、従ってそのまま時間微分を行うと 0

となってしまうが、ハイゼンベルク表示に移行すればその関係式はそのままハイゼンベルク方程式を与える [1][5]。
実際に計算すると

[ϕ(x),H] =

∫
d3p1

(2π)3E1

1

2

∫
d3p2

(2π)3
[
Q(p1), P

†(p2)P (p2)
]
eip1·x

= i

∫
d3p

(2π)3
P (p)e−ip·x

= iΠ(x) (104)

となり、ϕ(x)と正準共役な場Π(x)が得られる。さらにQ(p)や P (p)とハミルトニアンH との交換関係を求めると

[Q(p),H] =
1

2

∫
d3p′

(2π)3
[Q(p), P †(p′)P (p′)]

= iEP †(p) (105)

[P (p),H] =
1

2

∫
d3p′

(2π)3
[P (p), Q†(p′)Q(p′)]

= −iEQ†(p) (106)

となる。同様に

[Q†(p),H] = iEP (p), [P †(p),H] = −iEQ(p) (107)

が得られる。時間発展演算子 Ut = e−iHtに対してQ(p), P (p)のハイゼンベルク描像を考える。Qt(p) = U†tQ(p)Ut

および Pt(p) = U†t P (p)Ut とするとハイゼンベルク方程式は

i
dQt

dt
= [Qt,H], i

dPt

dt
= [Pt,H] (108)

なのでこれらをまとめると

d

dt

(
Qt

P †t

)
=

(
0 E

−E 0

)(
Qt

P †t

)
(109)
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とこれとエルミート共役な式が得られる。従ってこれは簡単に解くことができて

Qt(p) = cos(Et)Q(p) + sin(Et)P †(p) (110)

Pt(p) = cos(Et)P (p)− sin(Et)Q†(p) (111)

(112)

となることが分かる。cos(Et)や sin(Et)を指数を使って書き直してまとめると、ハイゼンベルク表示での場の演算
子 ϕ(x) = U†t ϕ(x)Ut が

ϕ(x) =

∫
d3p

(2π)32E

(
(Q(p)− iP †(p))eip·x+iEt + (Q(p) + iP †(p))eip·x−iEt

)
(113)

と計算できる。この表記は場の量子論ノート [1]における実スカラー場の生成消滅演算子を使った表記と比べられる
ものである。即ち生成消滅演算子 a(p)およびその共役な a†(p)と

a(p) = Q(p) + iP †(p), a†(p) = Q†(p)− iP (p) (114)

なる関係を見出すことができる。実際にこれらは生成消滅演算子の満たすべき交換関係

[a(p1), a
†(p2)] = (2π)32Eδ(3)(p1 − p2) (115)

を満たす。これら生成消滅演算子を用いて改めてハイゼンベルク描像での場 ϕ(x)を書くと

ϕ(x) =

∫
d3p

(2π)32E

(
a(p)eipx + a†(p)e−ipx

)
(116)

となる。また ϕ(x)に共役な場 Π(x)は生成消滅演算子で表すと

Π(x) = − i

2

∫
d3p

(2π)3
(
a(p)eipx − a†(p)e−ipx

)
(117)

となる。これれの交換関係は

[ϕ(x),Π(y)] =
i

2

∫
d3p

(2π)3

(
eip(x−y) + e−ip(x−y)

)
(118)

となり、これは同時刻のとき即ち x0 = y0 の時にデルタ関数 δ(3)(x− y)となる。ここで Q(p)と P (p)を逆に生成
消滅演算子で表しておく。

Q(p) =
1

2

(
a(p) + a†(−p)

)
, P (p) =

i

2

(
a†(p)− a(−p)

)
(119)

となる。さて量子力学での経路積分と同様の道筋を行くために場の固有状態を定義する。これは場の正準交換関係
があるので容易に定義できる。即ち

|φ⟩ = exp

(
−i
∫

d3x ·Π(x)φ(x)

)
|0ϕ⟩ (120)

が場の固有状態である。ここで |0ϕ⟩は場 ϕ(x)の固有値である φ = 0の固有状態である。つまりこの固有値は全て
の空間の点 xで 0となる関数を意味する。即ち

ϕ(x) |0ϕ⟩ = 0, Q(p) |0ϕ⟩ = 0 (121)

である。同じことではあるが ϕ(x)によって消滅する状態と言っても良い。この時状態 |φ⟩は

ϕ(x) |φ⟩ = φ(x) |φ⟩ (122)
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となり、ϕ(x)の固有値 φ(x)に属する固有状態となることが確かめられる。場 ϕ(x)は実スカラー場である即ち自己
エルミートな演算子なので固有値 φ(x)は実数、即ち実関数である。従ってそのフーリエ積分表示

φ(x) =

∫
d3p

(2π)3E
φ(p)eip·x (123)

とすればそのフーリエモード φ(p)には次の関係式が成り立つ。

φ∗(p) = φ(−p) (124)

この表式より φ(p)はQ(p)の固有値である。また量子力学の通常の議論により、自己エルミート演算子の異なる固
有値に属する固有状態は直交する。即ち

⟨φ1|φ2⟩ =
∏
x

(√
2π · δ(φ1(x)− φ2(x))

)
= δ(φ1 − φ2) (125)

である。この右辺の意味は φ1 と φ2 が関数として完全に一致していなければ 0となる関数のデルタ汎関数である。
また√

2πの factorは後の整合性のためにここに入れている。場の固有状態 |φ⟩を運動量積分表示を行うと

|φ⟩ = exp

(
−i
∫

d3p

(2π)3E
P (p)φ(p)

)
|0ϕ⟩ (126)

となる。同様に ϕ(x)に共役な Π(x)の固有状態も定義できる。この場合には Π(x)の固有値 π = 0に属する固有状
態を |0π⟩とすると、Π(x)の固有値 π(x)に属する固有状態 |π⟩は

|π⟩ = exp

(
i

∫
d3x · ϕ(x)π(x)

)
|0π⟩ (127)

と定義できる。これも異なる固有値に属する固有状態は直交して

⟨π1|π2⟩ =
∏
x

(√
2π · δ(π1(x)− π2(x))

)
= δ(π1 − π2) (128)

となる。これで量子力学でいうところの座標の演算子と運動量の演算子の固有状態がそれぞれ得ることができた。
場 ϕ(x)の固有状態と Π(x)の固有状態の積は

⟨π|φ⟩ = exp

(
−i
∫

d3x · φ(x)π(x)
)

= exp

(
−i
∫

d3p

(2π)3E
φ(p)π(p)

)
(129)

となる。ϕ(x)の固有状態を用いた 1の分解は

1 =

∫ ∏
x

[
dφ(x)√

2π

]
|φ⟩ ⟨φ|

=

∫ ∏
p

[
dφ(p)

(2π)7/2E

]
|φ⟩ ⟨φ|

=

∫
[dφ] |φ⟩ ⟨φ| (130)

で与えられる。場のデルタ汎関数 (125)に√
2πの factorを入れておいたが、それはこの汎関数積分の積分要素の分

母に√
2πを入れたいためであった。これによりこの 1の分解に右から |φ1⟩をかけることで実際に 1の分解を与えて
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いることを確認できる。また積分要素の分母に√
2πの factorを入れたい理由はこれを両方から ⟨π1|および |π2⟩を

かけたときに指数の積分となり、各空間の点 xにつき積分した結果として (2π)δ(π1(x)− π2(x))が現れるので
√
2π

で割ってちょうど ⟨π1|π2⟩の式 (128)を与えるからである。具体的に計算してみると

⟨π1|π2⟩ =
∫
[dφ] ⟨π1|φ⟩ ⟨φ|π2⟩

=

∫
[dφ] exp

(
−i
∫

d3x · φ(x)(π1(x)− π2(x))

)
=
∏
x

∫
dφ(x)√

2π
e−iφ(x)(π1(x)−π2(x))∆

3x

=
∏
x

(√
2π · δ(π1(x)− π2(x))

)
(131)

となる。同様に共役な場の固有状態を用いた 1の分解は

1 =

∫ ∏
x

[
dπ(x)√

2π

]
|π⟩ ⟨π|

=

∫ ∏
p

[
dπ(p)

(2π)7/2E

]
|π⟩ ⟨π|

=

∫
[dπ] |π⟩ ⟨π| (132)

となる。ここでいったん生成消滅演算子で粒子を生成した粒子状態との関係を簡単に見ておく。消滅演算子によっ
て消滅する状態を通常のように |0⟩と書くと

a(p) |0⟩ = 0 (133)

である。ここで量子力学とのアナロジーから演算子 P (p)は Q(p)の固有値 φ(p)の汎関数微分として働く。即ち

⟨φ|P (p) |0⟩ = −i(2π)3E δ

δφ(p)
⟨φ|0⟩ (134)

である。従って (133)式は a(p) = Q(p) + iP †(p)および P †(p) = P (−p) の関係を使うと、汎関数微分方程式(
φ(p)

(2π)3E
+

δ

δφ(−p)

)
⟨φ|0⟩ = 0 (135)

に書き換えられる。従ってこれを解くと

⟨φ|0⟩ = exp

(
−
∫

d3p

(2π)32E
φ∗(p)φ(p)

)
(136)

となり3 、これから |0⟩の |φ⟩による展開

|0⟩ =
∫
[dφ] exp

(
−
∫

d3p

(2π)32E
φ∗(p)φ(p)

)
|φ⟩ (138)

3P (p) を φ(p) の汎関数微分として置き換える議論にしっくりこない読者のために、直接的に導いておく。a(p) = Q(p) + iP †(p) より

|0⟩ = exp

(
−

∫
d3p

(2π)32E
Q†(p)Q(p)

)
|0π⟩ (137)

となる。実際に計算すると a(p) |0⟩ = 0 が確認できる。これからも (136) 式が得られる。
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が得られる。同様にして 1粒子状態は

a†(p) |0⟩ =
∫
[dφ] |φ⟩

(
φ∗(p)− (2π)3E

δ

δφ(p)

)
⟨φ|0⟩

=

∫
[dφ] · 2φ∗(p) exp

(
−
∫

d3p

(2π)32E
φ∗(p)φ(p)

)
|φ⟩ (139)

となる。2粒子状態まで見ておこう。2粒子状態を場の固有状態で展開したものは

a†(p1)a
†(p2) |0⟩ =

∫
[dφ]

(
φ∗(p1)− (2π)3E1

δ

δφ(p1)

)
2φ∗(p2) exp

(
−
∫

d3p2

(2π)32E2
φ∗(p2)φ(p2)

)
|φ⟩

=

∫
[dφ]

(
4φ∗(p1)φ

∗(p2)− (2π)32E1δ
(3)(p1 + p2)

)
exp

(
−
∫

d3p2

(2π)32E2
φ∗(p2)φ(p2)

)
|φ⟩

(140)

となる。これらは経路積分ノート [4]で計算した調和振動子の多粒子状態から得られるエルミート多項式のアナロ
ジーである。
ここまでくれば実スカラー場の経路積分を導出するのはたやすい。時刻 t0 に場の固有値 φ0 の固有状態から時間
発展して時刻 tに場の固有値 φの固有状態へ遷移する振幅 ⟨φ, t|φ0, t0⟩ = ⟨φ|Ut←t0 |φ0⟩ (Ut←t0 = e−iH(t−t0))は時
間間隔を細かく分けておき、間に ϕと Πの固有状態による 1の分解を差し込んでいけば

⟨φ, t|φ0, t0⟩ = ⟨φ|Ut←t0 |φ0⟩

= ⟨φ|Ut←tNUtN←tN−1
· · ·Uti+1←ti · · ·Ut1←t0 |φ0⟩

=

∫
[dφ][dπ] ⟨φ|Ut←tN |πN ⟩ ⟨πN |φN ⟩ · · · ⟨φi+1|Uti+1←ti |πi⟩ ⟨πi|φi⟩ · · ·Ut1←t0 |π0⟩ ⟨π0|φ0⟩ (141)

となる。被積分汎関数の i番目を取り出して計算すると

⟨φi+1|Uti+1←ti |πi⟩ ⟨πi|φi⟩ = ⟨φi+1| e−iH∆ti |πi⟩ ⟨πi|φi⟩ (∆ti = ti+1 − ti)

= exp

(
− i

2

∫
d3p

(2π)3
(
π∗i (p)πi(p) + φ∗i+1(p)φi+1(p)

)
∆ti +O(∆t2i )

)
⟨φi+1|πi⟩ ⟨πi|φi⟩

= exp

(
− i

2

∫
d3x

(
π2
i (x) + (∇φi+1(x))

2 +m2φ2
i+1(x)

)
∆ti +O(∆t2i )

)
× exp

(
i

∫
d3x (φi+1πi − φiπi)

)
= exp

(
i

∫
d3x

(
∆φi

∆ti
(x)πi(x)−

1

2

(
π2
i (x) + (∇φi(x))

2 +m2φ2
i (x)

))
∆ti +O(∆t2i )

)
= exp

(
i

∫
d3x · Li∆ti +O(∆t2i )

)
(142)

となる。従って振幅は

⟨φ, t|φ0, t0⟩ =
∫
[dφ][dπ] exp

(
i

∫
d4x · L(π, φ)

)
(143)

として得られる。最後に π(x)に関して平方完成するとガウス積分になるので、π(x)で汎関数のガウス積分を実行
するとラグランジアンから π(x)を消去した形でのラグランジアン、即ちラグランジアンの中の π(x)を ∂φ

∂t で置き
換えた形が得られる。従って最終的な振幅は φでの汎関数積分のみが残ったものとなる。即ち

⟨φ, t|φ0, t0⟩ =
∫
[dφ] exp

(
i

∫
d4x · L(φ)

)
(144)
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が最終的な形となり、普段場の量子論で扱う形のものが得られた。
この構成からわかるように経路積分に現れるラグランジアンの時間積分は初期時刻 t0から終状態の時刻 tまでの
積分になる。通常場の量子論で散乱（S matrix）の計算を行う際には t0 → −∞および t→ ∞の極限をとったもの
を扱う。このような極限を取る合理的な理由は、通常の素粒子の実験で観測される粒子の入射状態から終状態を観
測するまでの時間間隔が素粒子の相互作用する時間に対して十分に長いと見なせるためである。しかし一般的には
当然ながらそのような極限を取ったものに制限する必要はない。
また空間的に境界があるようなケースについても同様にして考えられる。経路積分に最も大きな寄与を与える古
典解を考える際には空間的な境界条件を考慮しないといけない。その場合には経路積分の積分変数である場は空間
的な境界条件を満たした場全体での汎関数積分をとることになる。
散乱理論で扱う場の量子論の振幅との関係を少し見ておこう。場の量子論ノート [5]では始状態と終状態をそれぞ
れ真空状態 |0⟩にとるが、場の固有状態での 1の分解を差し込むことによって、経路積分の被積分汎関数に (136)の
factorが始状態と終状態の部分から出てくる。場について汎関数積分を行うので真空波動汎関数 ⟨φ|0⟩が大きい場
配置の近傍からの寄与が支配的になる。指数の肩に負符号がついていることから、相互作用のない実スカラー場の
場合には φ(p) = 0近傍の寄与が支配的であることを意味する。この意味でこれは真空条件と整合している。一般
的な相互作用のある場の量子論を考えると、ここまで展開した相互作用のない理論の議論が行えないため ⟨φ|0⟩は
必ずしも φ = 0で最大となるとは限らない。そのような一般的な場合には ⟨φ|0⟩は φがその理論での真空期待値に
等しい時に最も大きくなると考えられる。従って相互作用のある理論の時には始状態と終状態が真空状態 |0⟩（即ち
最低エネルギーの状態）の時には真空期待値まわりの量子揺らぎを計算することになる。ここで |0⟩は運動量・エ
ネルギー演算子を 0にする、即ちローレンツ不変なので真空期待値は時空の座標に依存しない定数になることに注
意されたい。
もともとの計算をした振幅は始状態と終状態が場の固有状態であったが、その場合には初期時刻 t0に φ0で時刻 t

に φであるような古典解が最も経路積分に寄与するように思われる。通常はそれで正しい。しかしこれには少し注
意が必要である。時間に依存しないラプラス方程式などは境界条件を設ければ一意に解が決まるが、一般的にいっ
て、時間に依存する場の理論では境界条件を設けても必ずしも一意に解が決まるとは限らない。複数存在したり場
合によっては解がないときもある。4 このような場合の経路積分の停留点を見つける手法がいくつかある。ここでは
これ以上詳しくは立ち入らないが、詳細を知りたい読者は [6]や [7]を参照されたい。[6]は主に対称性の破れについ
て詳しく書かれているがインスタントンやソリトン解などの古典解について詳しい。[7]はインスタントンやソリト
ン解に関する論文をまとめた本で原論文にあたりたい読者は参照されたい。

6.2 複素スカラー場の場合
次に複素スカラー場での経路積分の導出を行う。ほぼほぼ実スカラー場と同じなのであるが完全を期すために複
素スカラー場でも導出しておこう。流れは実スカラー場の時と同じで、最初に複素スカラー場 ϕ(x)とその正準共役
な場 Π(x)を定義する。今回は複素場なのでそれらのエルミート共役な場 ϕ†(x)と Π†(x)が存在する。

ϕ(x) =

∫
d3p

(2π)3E
Q(p)eip·x, Π(x) =

∫
d3p

(2π)3
P (p)e−ip·x (145)

ϕ†(x) =

∫
d3p

(2π)3E
Q†(p)e−ip·x, Π†(x) =

∫
d3p

(2π)3
P †(p)eip·x (146)

従って当然だが ϕ(x)および Π(x)は自己エルミートではない。これらの間の正準交換関係から量子化されたこれら
の場の間の交換関係は

[ϕ(x),Π(y)] = iδ(3)(x− y), [ϕ†(x),Π†(y)] = iδ(3)(x− y) (147)

[ϕ(x), ϕ†(y)] = 0, [Π(x),Π†(y)] = 0, [ϕ(x),Π†(y)] = 0 (148)

4ただしWick 回転で Euclid 時間に移行したものは時間に依存しない場の理論と同じになる。
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となる。これらからフーリエ成分 Q(p), P (p)およびそれらのエルミート共役な演算子の交換関係

[Q(p1), P (p2)] = i(2π)3Eδ(3)(p1 − p2), [Q†(p1), P
†(p2)] = i(2π)3Eδ(3)(p1 − p2)

[Q(p1), P
†(p2)] = 0, [Q(p1), Q(p2)] = 0, [Q(p1), Q

†(p2)] = 0 (149)

が得られる。次にハミルトニアンH を書き下すと

H =

∫
d3x

(
|Π(x)|2 + |∇ϕ(x)|2 +m2|ϕ(x)|2

)
=

∫
d3p

(2π)3
(
P †(p)P (p) +Q†(p)Q(p)

)
(150)

となる。ここでもハミルトニアンH と ϕ(x)との交換関係は ϕ(x)の時間微分を与える。

[ϕ(x),H] =

∫
d3p1

(2π)3E1

∫
d3p2

(2π)3
[Q(p1), P

†(p2)P (p2)]e
ip1·x

= iΠ†(x) (151)

[ϕ†(x),H] =

∫
d3p1

(2π)3E1

∫
d3p2

(2π)3
[Q†(p1), P

†(p2)P (p2)]e
−ip1·x

= iΠ(x) (152)

複素場の場合には ϕ(x)の時間微分は Π†(x)であり、それとエルミート共役な場 ϕ†(x) の時間微分は Π(x)である。
この辺のことも場の量子論ノート [1]を参照されたい。これらの交換関係から次に Q(p)とハミルトニアンH ある
いは P (p)とハミルトニアンH との交換関係が得られる。

[Q(p),H] =

∫
d3p′

(2π)3
[Q(p, P †(p′), P (p′))]

= iEP †(p) (153)

[P (p),H] =

∫
d3p′

(2π)3
[P (p), Q†(p′)Q(p′)]

= −iEQ†(p) (154)

同様にこれらのエルミート共役を取れば

[Q†(p),H] = iEP †(p), [P †(p),H] = −iEQ(p) (155)

が得られる。ここでも Q(p)および P (p)をハイゼンベルク表示に移行してそれらを Qt(p), Pt(p)と書くと、微分
方程式が得られ、

d

dt

(
Qt(p)

P †t (p)

)
=

(
0 E

−E 0

)(
Qt(p)

P †t (p)

)
(156)

となるので簡単に解くことができて

Qt(p) = cos(Et)Q(p) + sin(Et)P †(p) (157)

Pt(p) = cos(Et)P (p)− sin(Et)Q†(p) (158)

(159)

を得る。従って ϕのハイゼンベルク表示での具体的な形が得られる。即ち

ϕ(x) =

∫
d3p

(2π)32E

(
(Q(p)− iP †(p))eip·x+iEt + (Q(p) + iP †(p))eip·x−iEt

)
(160)
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となる。やはりここでも生成消滅演算子 a(p)および ac(p)を

a(p) = Q(p) + iP †(p), a†c(p) = Q(−p)− iP †(−p) (161)

と定義する。今回はこれらはエルミート共役の関係にはない。場の量子論ノート [1]によれば ac(p)は反粒子の消滅
演算子である。これら生成消滅演算子の交換関係をここでもまとめておく。

[a(p1), a
†(p2)] = (2π)32Eδ(3)(p1 − p2), [ac(p1), a

†
c(p2)] = (2π)32Eδ(3)(p1 − p2) (162)

[a(p1), ac(p2)] = [a(p1), a
†
c(p2)] = 0 (163)

また場 ϕを生成消滅演算子で改めて書き直すと

ϕ(x) =

∫
d3p

(2π)32E

(
a(p)eipx + a†c(p)e

−ipx) (164)

となる。同様に正準共役な場 Πは

Π(x) = − i

2

∫
d3p

(2π)3
(
ac(p)e

ipx − a†(p)e−ipx
)

(165)

となる。従って場 ϕ(x)と共役な場 Π(y)との交換関係

[ϕ(x),Π(y)] =
i

2

∫
d3p

(2π)3

(
eip(x−y) + e−ip(x−y)

)
(166)

[ϕ†(x),Π†(y)] =
i

2

∫
d3p

(2π)3

(
eip(x−y) + e−ip(x−y)

)
(167)

が得られる。やはり x0 = y0 の時は正準交換関係を与える。Q(p), P (p)を生成消滅演算子で表しておくと

Q(p) =
1

2

(
a(p) + a†c(−p)

)
, P (p) =

i

2

(
a†(p)− ac(−p)

)
(168)

となる。
次に場 ϕ(x)の固有状態を定義する。場の固有状態も実スカラー場のアナロジーである。即ち

|φ⟩ = exp

(
−i
∫

d3x ·
(
Π(x)φ(x) + Π†(x)φ∗(x)

))
|0ϕ⟩ (169)

と定義する。ここで状態 |0ϕ⟩は複素場の固有値 0に属する固有状態である。即ち

ϕ(x) |0ϕ⟩ = 0, ϕ†(x) |0ϕ⟩ = 0 (170)

Q(p) |0ϕ⟩ = 0, Q†(p) |0ϕ⟩ = 0 (171)

である。正準交換関係を用いることで |ϕ⟩が場 ϕ(x)の固有値 ϕ(x)の固有状態であることがわかる。同時に ϕ†(x)

の固有値 φ∗(x)の固有状態でもある。即ち

ϕ(x) |φ⟩ = φ(x) |φ⟩ , ϕ†(x) |φ⟩ = φ∗(x) |φ⟩ (172)

である。今回は ϕ(x)も ϕ†(x)も自己エルミートではないので固有値は実数（実関数）ではないが、それらのどちら
ともが同じ状態を固有状態として持つために Reϕ(x) = 1

2 (ϕ(x) + ϕ†(x)) および Imϕ(x) = − i
2 (ϕ(x)− ϕ†(x)) と置

けば、これらはどちらも自己エルミートであるので

Reϕ(x) |φ⟩ = Reφ(x) |φ⟩ , Imϕ(x) |φ⟩ = Imφ(x) |φ⟩ (173)
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が実数（実関数）の固有値であることがわかる。従って異なる固有値に属する固有状態は直交する。

⟨φ1|φ2⟩ =
∏
x

(
(2πi) · δ(φ1(x)− φ2(x))δ(φ

∗
1(x)− φ∗2(x))

)
= δ(φ1 − φ2) (174)

従ってここからも実スカラー場と同様の議論を進められる。同様に Π(x)の固有状態は

|π⟩ = exp

(
i

∫
d3x ·

(
ϕ(x)π(x) + ϕ†(x)π∗(x)

))
|0π⟩ (175)

として定義できる。これは Π(x)と ϕ(x)の交換関係から

Π(x) |π⟩ = π(x) |π⟩ , Π†(x) |π⟩ = π∗ |π⟩ (176)

が得られる。即ち Π(x)の固有値 π(x)の固有状態であり、同時に Π†(x)の固有値 π(x)の固有状態である。|φ⟩と
|π⟩との内積は

⟨π|φ⟩ = exp

(
−i
∫

d3x · (φ(x)π(x) + φ∗(x)π∗(x))

)
= exp

(
−i
∫

d3p

(2π)3E
(φ(p)π(p) + φ∗(p)π∗(p))

)
(177)

である。また 1の分解は ϕ(x)の固有状態で展開したものは

1 =

∫ ∏
x

[
dφ∗(x)dφ(x)

2πi

]
|φ⟩ ⟨φ|

=

∫ ∏
p

[
dφ∗(p)dφ(p)

i(2π)4E

]
|φ⟩ ⟨φ|

=

∫
[dφ][dφ∗] |φ⟩ ⟨φ| (178)

であり、π(x)の固有状態で展開すると

1 =

∫ ∏
x

[
dπ∗(x)dπ(x)

2πi

]
|π⟩ ⟨π|

=

∫ ∏
p

[
dπ∗(p)dπ(p)

i(2π)4E

]
|π⟩ ⟨π|

=

∫
[dπ][dπ∗] |π⟩ ⟨π| (179)

となる。最後に時刻 t0 の時に固有状態 |φ0⟩で時刻 tの時に固有状態 |φ⟩へ遷移する振幅は時間発展演算子を Ut =

e−iH(t−t0) とすると

⟨φ, t|φ0, t0⟩ = ⟨φ|Ut←t0 |φ0⟩

=

∫
[dφ][dφ∗][dπ][dπ∗] ⟨φ|Ut←tN |πN ⟩ ⟨πN |φN ⟩ · · · ⟨φi+1|Uti+1←ti |πi⟩ ⟨πi|φi⟩ · · ·Ut1←t0 |π0⟩ ⟨π0|φ0⟩

(180)
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となる。この被積分汎関数の i番目のものを取り出して計算すると

⟨φi+1|Uti+1←ti |πi⟩ ⟨πi|φi⟩ = ⟨φi+1| e−iH∆ti |πi⟩ ⟨πi|φi⟩ (∆ti = ti+1 − ti)

= exp

(
−i
∫

d3p

(2π)3
(
π∗i (p)πi(p) + φ∗i+1(p)φi+1(p)

)
∆ti +O(∆t2i )

)
⟨φi+1|πi⟩ ⟨πi|φi⟩

= exp

(
−i
∫

d3x
(
|πi|2 + |∇φi+1|2 +m2|φi+1|2

)
∆ti +O(∆t2i )

)
× exp

(
i

∫
d3x

(
φi+1πi − φiπi + φ∗i+1π

∗
i − φ∗i π

∗
i

))
= exp

(
i

∫
d3x

(
∆φi

∆ti
πi +

∆φ∗i
∆ti

π∗i −
(
|πi|2 + |∇φi|2 +m2|φi|2

))
∆ti +O(∆t2i )

)
= exp

(
i

∫
d3x · Li∆ti +O(∆t2i )

)
(181)

となるので

⟨φ, t|φ0, t0⟩ =
∫
[dφ][dφ∗][dπ][dπ∗] exp

(
i

∫
d4x · L(π, π∗, φ, φ∗)

)
(182)

となるので、πおよび π∗について平方完成を行うとガウス積分となるので πおよび π∗をガウス積分して払いだす
と、良く知られた

⟨φ, t|φ0, t0⟩ =
∫
[dφ][dφ∗] exp

(
i

∫
d4x · L(φ,φ∗)

)
(183)

の形で経路積分が得られる。

6.3 Dirac場の場合
Dirac場で経路積分を導出する。Dirac場の固有値はグラスマン数に値を持つ関数になる。反交換する生成消滅演
算子の経路積分の導出は経路積分ノート [4]で行っているが、そこではシンプルは 1つのフェルミオンの調和振動子
のみを扱った。ここでは無限自由度を持つ Dirac場で同様の導出を行う。基本的には経路積分ノートで行った導出
と同じ手順なのだが、Diracスピノルを扱うことや無限自由度を扱う点がやや発展的である。場の量子論ノート [1]

の「フェルミオンの量子論」の節を参照すると読解の助けになると思われる。ボソンの場の経路積分の導出はQ,P

を使っての正準量子化を基準にしたが、フェルミオンの場合は生成消滅演算子での量子化から出発する。まずはじ
めに生成消滅演算子の反交換関係は

{as(p1), a†r(p2)} = {acs(p1), ac†r (p2)} = (2π)32E1δ
(3)(p1 − p2) (184)

{as(p1), acr(p2)} = 0 (185)

である。こっこで s, r = 1, 2である。cは荷電共役の意味で反粒子の生成消滅演算子を表している。ハミルトニアン
H はこれらを使って

H =

∫
d3p

(2π)32E

∑
s=1,2

E
(
a†s(p)as(p) + ac†s (p)acs(p)

)
(186)

とかけた。ここで零点エネルギーは無視した。場の消滅演算子 as(p), a
c
s(p)の固有状態は消滅演算子で消える真空

|0⟩に対して

|Ψ⟩ = exp

(∫
d3p

(2π)32E

∑
s=1,2

(
a†s(p)Ψs(p) + ac†s (p)Ψ c

s (p)
))

|0⟩ (187)
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として定義される。ここで Ψs(p), Ψ
c
s (p)はグラスマン数の値をとる関数である。実際にこれが固有状態となってい

ることを確かめるために、指数の肩にのっている factorと消滅演算子との交換関係を計算すると∫
d3p2

(2π)32E2

∑
r=1,2

[
as(p1), a

†
r(p2)Ψr(p2)

]
= Ψs(p1) (188)

∫
d3p2

(2π)32E2

∑
r=1,2

[
acs(p1), a

c†
r (p2)Ψ

c
r (p2)

]
= Ψ c

s (p1) (189)

となるので、

as(p) |Ψ⟩ = Ψs(p) |Ψ⟩ , acs(p) |Ψ⟩ = Ψ c
s (p) |Ψ⟩ (190)

となり、実際に |Ψ⟩は固有状態となっている。これらの異なる固有値に属する固有状態の積は

⟨Ψ1|Ψ2⟩ = exp

(∫
d3p

(2π)32E

∑
s=1,2

(
Ψ∗1s(p)Ψ2s(p) + Ψ c∗

1s (p)Ψ
c
2s(p)

))
(191)

となる。ここで固有値であるグラスマン数値の運動量空間の関数を用いて Dirac場をグラスマン数に値をとる空間
座標の関数として表すと

Ψ+(x) =

∫
d3p

(2π)32E

∑
s=1,2

us(p)Ψs(p)e
ip·x, Ψ c

+(x) =

∫
d3p

(2π)32E

∑
s=1,2

v∗s (p)Ψ
c
s (p)e

ip·x (192)

と書ける。Ψ+(x)および Ψ c
+(x)はそれぞれスピノールの 4つの成分をもつベクトルであることに注意されたい。場

の量子論ノート [1]によると Ψ+(x)と Ψ c∗
+ (x)は同じローレンツ群（正確にはスピン群）の表現となるので、ひとつ

の Dirac場 Ψ(x)としてまとめて書ける。

Ψ(x) = Ψ+(x) + Ψ c∗
+ (x) (193)

Ψ̄(x) = Ψ †(x)γ0 (194)

である。ここでこれから計算で使うのでスピノールベクトル us(p)および vs(p)の性質を復習しておく。

u†r(p)us(p) = 2Eδrs, v†r(p)vs(p) = 2Eδrs (195)

である。また

v̄r(p)γ
µus(p) = v̄r(p)γ

µ

(
−p/
m

)
us(p) = v̄r(p)

(
−p/
m

)
γµus(p)

= − pν
2m

v̄r(p){γµ, γν}us(p)

=
pµ

m
v̄r(p)us(p)

= 0 (196)

であるので、第 0成分を取り出すと vr(p)と us(p)は直交することがわかる。即ち

v†r(p)us(p) = u†r(p)vs(p) = 0 (197)

である。これらから Ψ+ と Ψ c
+ が直交することがわかる。∫

d3x · Ψ c†
+ (x)Ψ+(x) =

∫
d3x · Ψ †+(x)Ψ c

+(x) = 0 (198)
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Ψ+ どおしの内積は ∫
d3x · Ψ †+1(x1)Ψ+2(x2) =

∫
d3p

(2π)32E

∑
s=1,2

Ψ∗1s(p)Ψ2s(p) (199)

であり、同様に Ψ c
+ どおしの内積は∫

d3x · Ψ c†
+1(x1)Ψ

c
+2(x2) =

∫
d3p

(2π)32E

∑
s=1,2

Ψ c∗
1s (p)Ψ

c
2s(p) (200)

である。従って固有状態の内積は空間座標積分での表示を行うと

⟨Ψ1|Ψ2⟩ = exp

(∫
d3x ·

(
Ψ †+1(x1)Ψ+2(x2) + Ψ c†

+1(x1)Ψ
c
+2(x2)

)
(201)

となることがわかる。
反粒子の場 Ψ c

+(x)に関する議論は粒子の場 Ψ+(x)のまったく同じコピーになるので、ここからは粒子の場 Ψ+(x)

と Ψ c
+(x)をそれぞれわけて議論する。そのどちらであっても議論が同じであるからである。最後に粒子の場で導出

した経路積分と反粒子の場で導出した経路積分をかけ合わせれば最終的な Dirac場の経路積分が得られる。それは
経路積分の指数の肩に乗るラグランジアンもまた粒子の場のラグランジアンと反粒子の場のラグランジアンを単純
に足したものになるからである。これ以降は Ψ = Ψ+ あるいは Ψ = Ψ c

+ であるとする。まず 1の分解は∫
[dΨ ][dΨ †] |Ψ⟩ exp

(
−
∫

d3x · Ψ †(x)Ψ(x)
)
⟨Ψ |

=

∫
[dΨ ][dΨ †] |Ψ⟩ exp

(
−
∫

d3p

(2π)32E

∑
s=1,2

Ψ∗s (p)Ψs(p)

)
⟨Ψ |

=

∫
[dΨ ][dΨ †]

∑
n,m=0

1

n!m!

∫
d3p1

(2π)32E1
· · · d3pn

(2π)32En

d3q1

(2π)32E′1
· · · d3qm

(2π)32E′m
(−1)

n(n+1)
2

m(m+1)
2 +m(m+n)

×
∑

s1,··· ,sn=1,2

r1,··· ,rm=1,2

Ψs1(p1) · · ·Ψsn(pn)Ψ
∗
rm(qm) · · ·Ψ∗r1(q1) exp

(
−
∫

d3p

(2π)32E

∑
s=1,2

Ψ∗s (p)Ψs(p)

)

× |p1, s1 · · · ,pn, sn⟩ ⟨q̄m, rm · · · , q̄1, r1|
(202)

となる。ここで 1の分解を与える測度を次のように解釈する。即ち

[dΨ ][dΨ †] =
∏
p

s=1,2

( (2π)22E
∆3p

· dΨs(p) · dΨ∗s (p)
)

(203)

とする。グラスマン数積分に factorがかかっているが、これは 1の分解が有限な値を与えるようにかけられた factor

である。グラスマン数積分のところだけ取り出してみると∫
[dΨ ][dΨ †] · Ψs1(p1) · · ·Ψsn(pn)Ψ

∗
rm(qm) · · ·Ψ∗r1(q1) exp

(
−
∫

d3p

(2π)32E

∑
s=1,2

Ψ∗s (p)Ψs(p)

)

=

∫
[dΨ ][dΨ †] · Ψs1(p1) · · ·Ψsn(pn)Ψ

∗
rm(qm) · · ·Ψ∗r1(q1)

∏
p

s=1,2

(
1− ∆3p

(2π)32E
Ψ∗s (p)Ψs(p)

)

= δnm · δp1,q1

∆3p
· · · δpn,qm

∆3p
· δs1r1 · · · δsnrm · (2π)32E1 · · · (2π)32En (204)
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であることがわかる。計算を簡単に説明すると、グラスマン数積分はすべての運動量空間内の点を添え字に持つグ
ラスマン積分が現れる。グラスマン積分の定義より、被積分関数にはすべての運動量空間内の点の添え字をもつグ
ラスマン数が 1度だけ現れた項のみが残り、それ以外の項は 0となる。指数からは 1はたは 2つの複素共役なグラ
スマン数の積の項かがかけられるので、指数の外にあるグラスマン数の添え字の運動量以外はグラスマン数の 2つ
のペアの項から運動量の添え字のグラスマン数が補われることになる。必然的に nとmは等しくないといけないこ
とになる。スピノールの添え字も同様である。ここで最後の結果に現れる factorについて

δp,q
∆3p

= δ(3)(p− q) (205)

と読み替える。運動量空間を離散化したものとして考えるとこの対応は自然である。これらの結果を使うと、また
p1, · · · , pn と q1, · · · , qn の組み合わせが n!通りあることに注意すれば、1の分割は実際に

(202) =

∫
[dΨ ][dΨ †]

∑
n=0

∫
d3p1

(2π)32E1
· · · d3pn

(2π)32En
|p1, s1 · · · ,pn, sn⟩ ⟨p̄n, rn · · · , p̄1, r1|

= 1 (206)

となり、1に等しいことがわかる。最後に開始時刻 t0 で固有値 Ψ0 の固有状態から出発して時刻 tに固有値 Ψ の固
有状態に遷移する振幅は

⟨Ψ, t|Ψ0, t0⟩ =
∫
[dΨ ][dΨ †] ⟨Ψ |Ut←tN |ΨN ⟩ e−

∫
Ψ†Ψ · · · ⟨Ψi+1|Uti+1←ti |Ψi⟩ e−

∫
Ψ†

i Ψi · · ·Ut1←t0 |Ψ0, t0⟩ (207)

となるので、i番目の factorを計算すると

⟨Ψi+1|Uti+1←ti |Ψi⟩ exp
(
−
∫

d3x · Ψ †i (x)Ψi(x)
)

= ⟨Ψi+1|e−iH∆ti |Ψi⟩ exp
(
−
∫

d3x · Ψ †i (x)Ψi(x)
)

= exp

(
−i
∫

d3p

(2π)32E
E
∑
s=1,2

Ψ∗s (p)Ψs(p)∆ti +O(∆t2i )

)
⟨Ψi+1|Ψi⟩ exp

(
−
∫

d3x · Ψ †i (x)Ψi(x)
)

= exp

(
−i
∫

d3x · Ψ̄(x)(−iγi∂i +m)Ψ(x)∆ti +O(∆t2i )

)
exp

(∫
d3x ·

(
Ψ †i+1(x)Ψi(x)− Ψ †i (x)Ψi(x)

))
= exp

(∫
d3x ·

(
∆Ψ †i
∆ti

(x)Ψi(x) + Ψ̄(x)(−iγi∂i +m)Ψ(x)

)
∆ti +O(∆t2i )

)
(208)

であるので、まとめると、振幅は

⟨Ψ, t|Ψ0, t0⟩ =
∫
[dΨ ][dΨ †] exp

(
i

∫
d4x ·

(
i
∂Ψ̄

∂t
γ0Ψ + Ψ̄(−iγi∂i +m)Ψ

))
=

∫
[dΨ ][dΨ †] exp

(
i

∫
d4x · Ψ̄(−iγµ∂µ +m)Ψ

)
=

∫
[dΨ ][dΨ †] exp

(
i

∫
d4x · L(Ψ̄ , Ψ)

)
(209)

となり、良く知られた経路積分の形が得られた。反粒子の場の場合は最後に時間微分について部分積分をつかって
もう一方の方に時間微分をかけるようにした後にそれらを入れ替えてやると正しいラグランジアンの形になること
が確かめられる。
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