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1 はじめに
今回は電子の二重スリットの干渉縞のパターンを計算して出したいと思います。比較的、量子力学の基礎的な知
識で計算が行えます。量子力学の学習や復習などになれば幸いです。得られる結果は高校の物理でも計算したこと
がきっとあるはずの干渉縞の条件式が得られます。電子の二重スリットの実験は 1度に 1つの電子を照射します。1

つ電子をスリットに照射してそれがスクリーン上の計測素子で計測されると計測された素子に印が付けられます。
たくさんの電子を 1つづつ照射することでポツポツと電子が計測された位置に印がついていき、それが全体として
干渉縞のパターンを形成します。このノートではその干渉縞のパターンを表す分布関数を計算します。

2 二重スリットについて
電子の二重スリット問題を考えるにあたって、最初にいくつか仮定を行います。まず電子の速度が光速に比べて
十分に遅いこと。この仮定は実際の電子ビームで行う電子のエネルギーが数 keVであることから妥当であるといえ
る。この仮定によって非相対論的な量子力学的な扱いが正当化される。次に電子の場のラグランジアン Lは

L =

∫
d3x ·

(
iℏ · ψ∗ d

dt
ψ − ℏ2

2m
|∇ψ|2 + ψ∗ρ+ ρ∗ψ

)
(1)

と与えられる。電子の運動方程式はラグランジアンの場 ψ∗ による変分を行った時にラグランジアンが停留すると
いう条件から得られる。最初の 2項はよく知られたシュレディンガー方程式を与える。最後の 2項は電子がスリッ
トを抜けるときに散乱される効果を表している。このラグランジアンを ψ∗ による変分をとってそれが停留すると
いう条件から

iℏ
dψ

dt
= − ℏ2

2m
∆ψ − ρ (2)

が得られる。さらに電子のビームに含まれる電子はエネルギーの固有状態であるとする。エネルギーを Eとすると
時間によらないシュレディンガー方程式 (

− ℏ2

2m
∆− E

)
ψ = ρ (3)

が得られる。ここでさらにスリットによる散乱の効果を表す ρを理想的に考えて 1点 x0で散乱されるものとする。
すると ρはデルタ関数に置き換えられて、(

− ℏ2

2m
∆− E

)
ψ(x) = δ(3)(x− x0) (4)
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この方程式を解く方法は良く知られている。即ち ψ(x)をフーリエ変換して ψのフーリエ成分を求める。フーリエ
成分は

ψ(p) =
2m

p2 − 2mE ± iε
(5)

であることがわかる。ここで iεはフーリエ変換を行った時に poleの位置ずらして正しい結果を得るための処方であ
る。+iεであるか −iεであるかに従って、スリットに散乱される波か吸収される波（実際には吸収されないが）か
を表す。運動量空間での積分を行って ψ(x)を求めると

ψ(x) =
m

2π|x|
exp

(
±i

√
2mE

ℏ
|x|

)
(6)

となる。実際に運動量積分を行ってこの結果を得る計算方法に明るくない読者は場の量子論ノート [1]で詳しく計算
しているので参照されたい。従って時間依存部分を含めると

ψ(t,x) =
m

2π|x− x0|
exp

(
±i

√
2mE

ℏ
|x− x0| − iEt

)
(7)

となる。ここではスリットに散乱される電子を考えているので符号は +をとる。ここでスリットの穴の位置を x1

と x2とする。x0 = x1から来る波を ψ1とし、x0 = x2から来る波を ψ2とすると、それぞれのスリットを通過した
後に位置 xに到達する電子の波は

ψ(t,x) = ψ1(t,x1) + ψ2(t,x2) (8)

と表される。スリットを通過した電子の波はスリットから離れた位置にあるスクリーンに到達して、スクリーンの
計測素子と反応する（吸収される）ことでスクリーン上の特定の位置に印がつく。ここで電子は 1粒子状態なので
1つの素子としか反応することができない。電子は 1/2個分のエネルギーの電子という状態になれないためである。
従って一度に複数の素子の位置に印が付くことはない。電子がスクリーン上のどの計測素子と反応するかは確率で
しかわからないが、その確率分布は |ψ(x)|2 で与えられる。実際に実験においても分布が得られるものの、どの位
置で計測されるかは予測不能だそうである。量子力学では確率のみが計算できるだけであり、実際にどの事象が起
こるかは完全にランダムであり、それを予測できる理論はおそらく存在しない。確率分布 |ψ(x)|2 を計算すると

|ψ(t,x)|2 = |ψ1|2 + |ψ2|2 + (ψ∗
1ψ2 + ψ1ψ

∗
2)

=
m2

2π2|x|2

(
1 + cos

(√
2mE

ℏ
(|x− x1| − |x− x2|)

))
(9)

ここでさらにスリットの位置およびスクリーン上の点の位置座標をそれぞれ x1 = (−d
2 , 0)、x2 = (d2 , 0)、x = (x, L)

とする。2つのスリット間の距離は dであり、スリットスクリーンの距離はLである。スクリーン上の位置 x = (x, L)

の計測素子と電子が反応する確率分布は

(9) =
m2

2π2|x|2

1 + cos

√
2mE

ℏ

√L2 +

(
x+

d

2

)2

−

√
L2 +

(
x− d

2

)2


=
m2

2π2|x|2

(
1 + cos

(√
2mE

ℏ
L

((
1 +

(
x+ d

2

)2
2L2

+O(d2)

)
−

(
1 +

(
x− d

2

)2
2L2

+O(d2)

))))

=
m2

2π2(L2 + x2)

(
1 + cos

(√
2mE

ℏ

(
d

L
x+O

(
d2

L2

))))
(10)

2



となる。ここで電子の波長は λ = h√
2mE

である。ここに hはプランク定数であり ℏ = h
2π である。良く知られた干

渉縞の条件
d

L
x = nλ (n = 0,±1,±2,±3, · · · ) (11)

が得られる。こうして電子がスクリーン上のどの位置の計測素子と反応するかを表す確率分布が得られた。従って
たくさんの電子に対してスクリーンへ投射することでこの確率分布に従った干渉縞が現れることになる。最後に干
渉縞のパターンの概形を表したグラフを参考までに掲載しておく。

図 1: 二重スリットの干渉縞の強弱パターン
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